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abstract

Identifying the processes by which human cultures spread across diffferent populations is one of the 
most topical objectives shared among diffferent fields of study. Seminal works have analyzed a variety of 
data and attempted to determine whether empirically observed patterns are the result of demic and/or 
cultural difffusion. This special issue collects articles exploring several themes (from modes of cultural 
transmission to drivers of dispersal mechanisms) and contexts (from the Neolithic in Europe to the spread 
of computer programming languages), which offfer new insights that will augment the theoretical and 
empirical basis for the study of demic and cultural difffusion. In this introduction we outline the state of 
art in the modeling of these processes, briefly discuss the pros and cons of two of the most commonly 
used frameworks (equation-based models and agent-based models), and summarize the significance of 
each article in this special issue.

The remarkable adaptive capacity of our 
species is testified by the dispersal of early 
human communities and their coloniza-

tion of a diverse range of environmental settings. 
This successful process is underpinned by the fact 
that human culture is cumulative and can rapidly 
spread among human populations located at large 
distances. The study of the difffusion of cultural 
traits is thus of great interest, forming the basis 
for understanding human cultural diversity and 
complexity.

Demic and Cultural Diff usion

A new cultural trait can spread by diffferent com-
binations of the following three processes: demic 

difffusion, the spread of human communities car-
rying the new trait; cultural difffusion, the spread of 
the cultural trait through social learning (without a 
concurrent substantial population movement); and 
local innovation, the independent invention of the 
same new trait by communities at diffferent loca-
tions. The three processes are also pivotal to one of 
the most intriguing questions shared by a variety 
of disciplines (including but not limited to an-
thropology, genetics, archaeology, and linguistics): 
whether observed cultural similarities between 
diffferent geographic regions are the result of shared 
ancestry and demic difffusion, cultural difffusion, 
or convergent adaptation to similar selective pres-
sures. These processes are deeply intertwined, are 
not mutually exclusive, and often exhibit (at least 
superficially) similar spatial structures of cultural 
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diversity/similarity (Nunn et al. 2006; Crema et 
al. 2014).

Earlier studies by Ammerman and Cavalli-
Sforza (1971) focused on a specific, seminal case 
study: the spread of farming in Europe. According 
to archaeological data, the oldest farming sites are 
located in the Near East and date to about 12,000 
years BP. From there, agriculture and stockbreeding 
spread across Europe until about 5,000 years BP. 
Local convergent innovation is widely disregarded 
for this instance, as most of the wild varieties of 
the domesticated plants and animals are found 
only in the Near East (Smith 1995). Genetic studies 
further support this argument, as several lines of 
evidence suggest that almost all European domes-
ticates have a Near Eastern origin (Troy et al. 2001; 
Morrell and Clegg 2007). However, the roles of 
demic and cultural difffusion in the expansion of 
these domesticates into Europe have been strongly 
debated during the last 50 years. Edmonson (1961) 
hypothesized that farming propagated by cultural 
difffusion. In contrast, Ammerman and Cavalli-
Sforza (1971) advocated for an important role of 
demic difffusion in the spread of farming. They 
argued that demic difffusion will be most relevant in 
situations with marked diffferences in demographic 
pressure (Ammerman and Cavalli-Sforza 1973) and 
that early farming promoted population growth. 
Crucially, they predicted that such a process would 
lead to genetic clines but that (a) these will not 
form as a consequence of a total replacement of 
Mesolithic groups by Neolithic ones and that (b) 
mixing or interbreeding between individuals of the 
Neolithic and Mesolithic genetic types is required 
for the emergence of such a spatial pattern (Am-
merman and Cavalli-Sforza 1971).

Albeit both genetic and cultural transmission 
can be framed within a Darwinian and population-
oriented framework, they are characterized by 
diffferent inheritance systems (Cavalli-Sforza and 
Feldman 1981; Boyd and Richerson 1985). Cultural 
transmission can follow three diffferent forms: verti-
cal, horizontal, and oblique (Cavalli-Sforza and 
Feldman 1981). Vertical cultural transmission closely 
resembles a genetic inheritance system, as cultural 
traits are transmitted from parent to offfspring. In 
the case of spread of farming, vertical transmission 
results in cultural change in cases of interbreeding 
between agriculturalists and hunter-gatherers, as 
offfspring will inevitable choose the trait of one of 

the two parents (in this case agriculturalists; see Ca-
valli-Sforza 1986, esp. 409–411; Bentley et al. 2009). 
Horizontal transmission includes any social learn-
ing within the same generation, whereas oblique 
transmission is nonparental but intergenerational. 
Compared to vertical transmission, horizontal and 
oblique transmissions can often provide faster 
means of difffusion. Both pathways can be many-
to-one (i.e., multiple teachers, one learner) and 
one-to-many (i.e., single teacher, multiple learners), 
rather than injective (one-to-one or two-to-one) as 
in vertical cultural transmission. Thus, in the case 
of the spread of farming, agriculturalists can teach 
specific skill sets to hunter-gatherers of both the 
same (horizontal transmission) and subsequent 
generations (oblique transmission).

Under any of the three forms (or combinations 
of them), the Neolithic genetic type will eventually 
mix with the Mesolithic one. If the proportion of 
people with the Mesolithic genetic type involved 
was suffficiently high (relative to those with the 
Neolithic genetic type), interbreeding will have 
led to a genetic gradient or cline, with highest 
frequencies of the Neolithic genes at the origin 
of the farming expansion in the Near East. This 
cline will gradually disappear over time as a result 
of admixture, but it may be still observed if not 
too much time has elapsed (so that populations 
have not substantially mixed since the cline was 
formed). The prediction of genetic clines centered 
in the Near East by Ammerman and Cavalli-Sforza 
(1971) was impressively confirmed by Menozzi et 
al. (1978), who analyzed genetic data from modern 
Europeans. Although other processes (e.g., the 
spread of modern humans) may have also played 
a role in the formation of some of those observed 
clines, the Neolithic spread is considered as an 
important cause (Barbujani 2013; Rasteiro and 
Chikhi 2013).

Ammerman and Cavalli-Sforza (1973) calcu-
lated the farming spread rate using Fisher’s wave-
of-advance mathematical model, which assumes 
a purely demic process. This has sometimes led to 
the wrong impression that the authors advocated 
for purely demic difffusion. On the contrary, they 
pointed out that demic and cultural difffusion are 
not mutually exclusive and that their relative im-
portance was probably not the same across Europe 
(Ammerman and Cavalli-Sforza 1984). Recently, 
cultural transmission theory has been incorporated 



Modeling Demic and Cultural Diff usion: An Introduction ■ 143

to extend demic wave-of-advance models in order 
to include cultural as well as demic difffusion (Fort 
2012). This new demic-cultural theory has been 
used to estimate the relative importance of demic 
and cultural difffusion in diffferent regions of Europe 
(Fort 2015; see the cover figure of this special issue).

Paralleling these studies that seek to assess 
the relative contribution of demic and cultural 
difffusion, an independent research agenda targeting 
the cultural and demic components separately has 
flourished during the last three decades. Cultural 
evolutionary studies, with early works inspired from 
population genetics (Cavalli-Sforza and Feldman 
1981; Boyd and Richerson 1985), have matured into a 
cross-disciplinary field with a rich tradition in both 
theoretical and empirical studies (for a review, see 
Mesoudi 2011). The population-level consequences 
of a variety of transmission modes—ranging from 
simple random cultural drifts to more intricate 
context-biased (i.e., frequency- and model-based) 
and content-biased transmissions (e.g., functional, 
aesthetic)—have been first predicted mathemati-
cally and then examined against a variety of data, 
from the difffusion of crop types (Henrich 2001), to 
baby names (Bentley et al. 2004) and pottery deco-
ration (e.g., Kandler and Shennan 2013). Other stud-
ies have contributed to a broader research agenda 
from slightly diffferent standpoints, for instance, 
looking at the efffect of convergent adaptation in 
relation to cultural inheritance (e.g., Beheim and 
Bell 2011) or using linguistic data and graph theory 
to discern vertical and horizontal transmission 
(Towner et al. 2012).

Studies dealing with the demic difffusion com-
ponent also gradually grew with, for example, (a) 
reaction-difffusion equations with a time delay 
linked to the generation time (Fort and Méndez 
1999); (b) a distribution of delay times (Vlad and 
Ross 2002); (c) advection due to nonisotropic dis-
persal (Davison et al. 2006); (d) cohabitation equa-
tions that further improve the description of the 
efffect of the time interval during which offfspring 
live with their parents (Fort et al. 2007); and (e) 
reaction-dispersal equations with a set of disper-
sal distances and probabilities (Isern et al. 2008), 
which are more precise that their second-order 
approximations (these approximations are usually 
called reaction-difffusion equations; for an excellent 
review on their applications to human dispersals, 
see Steele 2009). For some detailed comparisons 

between reaction-dispersal and reaction-difffusion 
equations, see Fort (2015: Section S5).

Purely demic difffusion models have been used 
to simulate the “out of Africa” dispersal of modern 
humans (Mithen and Reed 2002; Hughes et al. 
2007) and the cline of genetic diversity that is ex-
pected by this process (Ramachandran et al. 2005). 
Demic difffusion theory has also been applied to 
understand the geographical rates of spread of 
postglacial recolonizations (Fort et al. 2004) and 
the initial Paleoindian occupation of America 
(Hamilton and Buchanan 2007). Purely demic 
analyses also include the role of waterways in the 
spread of human populations (Davison et al. 2006; 
Silva and Steele 2014), the evolution of Neolithic 
cultural diversity (Pérez-Losada and Fort 2011), the 
spread of Bantu populations (Russell et al. 2014), 
the geographical origins of rice cultivation in Asia 
(Silva et al. 2015), and the efffect of topography and 
climate on the spread of farming (Bernabeu et al. 
2015), among others.

Language competition is an important phe-
nomenon involving both demic and cultural dif-
fusion. The purely cultural model proposed by 
Abrams and Strogatz (2003) was extended through 
the inclusion of a demic component by Patriarca 
and coworkers (Patriarca and Leppänen 2004; 
Patriarca and Heinsalu 2009). Kandler and cowork-
ers (Kandler 2009; Kandler et al. 2010) considered 
bilingual speakers as a third population and ap-
plied a demic-cultural model to the dynamics of 
Britain’s Celtic languages. For a review on such 
models, see Solé et al. (2010). More recently, Isern 
and Fort (2014) pointed out some limitations of 
the original model by Abrams and Strogatz (2003) 
and its extensions, and introduced an alternative 
language-competition model with demic difffusion. 
This model was applied to predict the replace-
ment speed of the Welsh language, yielding a speed 
consistent with the observed one.

Demic-cultural models have also been applied 
to simulate genetic clines (Rendine et al. 1986; 
Aoki et al. 1996; Currat and Excofffier 2005) and 
the formation of cultural boundaries (Ackland 
et al. 2007), as well as to model the survival of 
hunter-gatherers in regions where environmental 
conditions do not favor farming (Patterson et al. 
2010).

The mathematical foundations of cultural and 
demic studies have eased the integration of recent 
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simulation techniques since the early 1990s. In par-
ticular, the development of agent-based simulation 
has exponentially increased possibilities offfered by 
model-based research in the social sciences. On one 
hand, this led to the development of rich, “whole-
society” models, which enabled the formalization 
and integration of multiple behavioral assumptions 
drawn from diffferent theoretical backgrounds (for 
a review, see Lake 2013). While these studies have 
undoubtedly increased the level of realism, offfering 
multiproxy comparison with the empirical data, 
in some cases the cost of increased complexity 
outweighed the benefit derived by the addition of 
extra parameters. On the other hand, these techni-
cal developments have also encouraged the study 
of detailed aspects of the agent model and how 
small diffferences at this scale can lead to drastically 
diffferent patterns at the population level. Several 
authors have tackled both ends of the spectrum, 
from abstract theoretical models (e.g., Premo and 
Scholnick 2011; Crema et al. 2014; Wren et al. 2014) 
to more empirically grounded models aimed to 
study specific historical and geographic contexts 
of demic and cultural difffusion (e.g., Mithen and 
Reed 2002; Bernabeu et al. 2015).

Reaction-dispersal models are often used 
when dealing with demic and/or cultural front 
propagation. In contrast, agent-based models are 
applied to many other anthropological, biological, 
and archaeological challenges involving demic 
and cultural difffusion and other processes. In this 
context, it is useful to compare when reaction-
dispersal models are preferable to agent-based 
models and vice versa. This aspect has been often 
overlooked, but it is very relevant to this special 
issue (see also the contribution by Romanowska). 
The next section deals with this aspect; readers 
not interested in this technical problem can move 
directly to the last section, which summarizes the 
articles collected in this special issue.

Reaction-Dispersal versus Agent-
Based Models

In agent-based models, a set of rules describes the 
behavior of agents (i.e., dispersal, reproduction, 
etc.). If such rules are suffficiently simple, we can 
replace them with mathematical equations (such 
that the evolution of the system predicted by those 

equations is the same as those predicted by the 
rules of the agent-based model). For example, 
consider the rule “the net reproduction (births 
minus deaths) of agents is proportional to their 
population density p.” This rule can be replaced 
by the equation dp/dt = kp, where t is the time and 
k is a constant.

If individuals move in space, the equations 
are usually called reaction-dispersal equations 
(these include reaction-difffusion equations; see 
previous section). Reaction-dispersal models can-
not be used if the rules driving the behavior of 
agents are so complicated that it is not possible 
to determine a formula for computing the front 
speed. As an example, consider the Sugarscape 
model by Epstein and Axtell (1996) that was later 
modified to simulate the population dynamics of 
the Anasazi (Axtell et al. 2002). In this agent-based 
model, diffferent points on a surface have diffferent 
amounts of sugar. Each agent has a value for its 
metabolism and a value for its vision. The motion 
rules are as follows: “Each agent looks around as far 
as its vision permits, finds the spot with the most 
sugar, goes there, and eats the sugar. Every time 
an agent moves, it burns some sugar (according to 
its metabolic rate). Agents die if they burn up all 
their sugar.” It does not seem possible to describe 
this model as an equation and determine the front 
speed under such complex rules. This example 
clearly shows the limitations of reaction-dispersal 
models, compared with agent-based models.

Nevertheless, reaction-dispersal models are 
preferable to agent-based models when the evolu-
tion equations are simple enough that it is possible 
to determine a formula for computing the front 
speed. This provides several advantages. First, it 
allows for a substantial reduction in the computa-
tion time. For example, consider a recent model of 
Neolithic spread on a homogeneous surface. Let 
(x, y) stand for the spatial coordinates and t for 
time. The rules are as follows: “Every generation, 
the following events take place: (a) every individual 
has a number of offfspring equal to R0, provided 
that the initial local population density p(x, y, t) 
is below its saturation value pmax (but if the local 
population density p(x, y, t) is equal or above pmax, 
not all individuals have offfspring and the offfspring 
population density is equal to pmax); (b) all parents 
die; and (c) each offfspring stays at the same loca-
tion with probability pe (the so-called persistence) 
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or jumps a distance r in a horizontal or vertical 
direction (with probability (1 – pe)/4).” These rules 
are simple enough to be written with mathematical 
equations (Fort et al. 2007):

 p(x, y, t + T) = R[∫∞
–∞ ∫∞

–∞ p(x + Δx, y + Δy, t)
   ϕ(Δx, Δy) dΔx dΔy] 

(1)

where T is the generation time; we further intro-
duce the reproduction function

 

R[p(x, y,t+T )]=

{ R
0
p(x, y,t) if p(x, y,t)< pmax

0 if p(x, y,t)> pmax
,
 

(2)

and ϕ(Δx, Δy), the dispersal probability to jump 
from location (x + Δx, y + Δy) to location (x, y), is in 
this very simple case

 ϕ(Δx, Δy) = peδ(Δ) + (1 – pe)δ(Δ – r) (3)

where Δ = √(Δ2
x + Δ2

y) is the jump length and δ(Δ – r) 
is a function that vanishes everywhere except at Δ 
= r (so that only jumps of length r are allowed in 
this simple model). For systems evolving according 
to these equations, the speed of front solutions has 
been shown to be (Fort et al. 2007)

 c=min
λ>0

ln{R
0
[pe+(1−pe)I0(λr)]}

Tλ
,  (4)

where I0(λr) is the modified Bessel function of the 
first kind and order zero. We can use this equation 
and numerical values of the parameters (R0, pe, r, 
and T) into a mathematical computer program 
(e.g., Mathematica or Matlab), plot the function 
in the right-hand site of Equation 4, and find its 
minimum (i.e., the front speed c) very quickly. 
But if we decide instead to write down and run an 
agent-based computer program, we will surely need 
more time to find the front speed c. This is the main 
advantage of reaction-dispersal models compared 
with agent-based models. As a consequence, a 
second advantage is that we are also able to directly 
and rapidly estimate the dependence of the front 
spee c to one or more parameters (R0, pe, r, and 
T)), a process that will, again, require substantial 
computational time with agent-based simulations.

In some cases, the advantage of reaction-

dispersal models becomes further relevant when 
we can identify instances where we do not even 
need to assume parameter values or ranges to know 
the dependency of the front speed on the variables. 
For example, Fisher’s model (for details, see Steele 
2009) leads to the wave-of-advance speed c = 
√(aD), which immediately shows how the speed 
c depends on the net reproduction rate a and dif-
fusion coeffficient D. Thus, the formula c = √(aD) 
also shows that the front speed does not depend 
on the carrying capacity. Obviously, such a general 
conclusion cannot be reached using agent-based 
models, simply because it is impossible to run a 
simulation an infinite number of times.

However, as explained above, reaction-disper-
sal models are useful only for suffficiently simple 
agent rules. Moreover, they have the following two 
additional limitations:

1. Nonhomogeneous surfaces: If  the spread 
takes place in nonhomogeneous surfaces, 
usually we cannot find a formula for the 
front speed. For example, Equation 4 is valid 
only for homogeneous surfaces. However, for 
nonhomogeneous surfaces we can perform 
numerical simulations using the same 
reaction-dispersal equations (not necessarily 
agent-based models). For example, the 
reaction-dispersal Equations 1–3 above have 
been applied by Fort et al. (2012) to take into 
account the efffect of seas and mountains in 
the spread of farming in Europe. The diffference 
between such simulations and agent-based 
models is that simulations of reaction-dispersal 
equations find the population density, 
whereas agent-based models follow the 
dispersal and movement of individual agents. 
If both approaches are valid, they will yield 
the same results for the variable that can be 
compared with empirical data (e.g., the wave-
of-advance speed). Incidentally, in the case 
of homogeneous surfaces, reaction-dispersal 
simulations are useful to check the validity of 
the formula for the front speed [this was done, 
e.g., by Fort et al. (2007) for Equation 4].

2. Even for homogeneous surfaces, reaction-
dispersal models are of little use if we are 
interested not exclusively in the front speed 
but also in analytical results for other variables. 
For example, it is seldom possible to find an 
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equation for a front profile, a genetic cline, 
and so forth. However, we can again use the 
same evolution equations (e.g., Equations 1–3, 
thus not necessarily agent-based models) to 
perform computer simulations and find results 
that cannot be obtained analytically (e.g., a 
numerical front profĳile).

The Special Issue Contributions

This volume offfers a series of contributions that 
provide insightful considerations of some details 
and assumptions that are often uncritically used 
in models of demic and cultural difffusion, rang-
ing from drivers of dispersal processes (Wren and 
Costopoulos) to diffferent modes of transmission 
(Crema and Lake, Wilder and Kandler). Some of 
the works are purely theory-building exercises, 
while others focus on specific historical contexts, 
from hominid dispersals (Wren and Costopoulos, 
Romanowska) to Neolithic landscape productivity 
(Shukurov et al.) and the evolution of computer 
programming languages (Valverde and Solé).

The article by Romanowska offfers a compre-
hensive introduction to the theory and practice of 
the computational modeling of demic difffusion. 
She carefully describes equation-based modeling, 
cellular automata, and agent-based modeling. Her 
article provides an extensive overview that can 
guide nonexperts and students, with highlights 
on key aspects of the modeling cycle. Although 
tailored to hominid dispersal models, the review 
is relevant to a broader readership with interest in 
computational modelling.

Wren and Costopoulos also consider hominid 
dispersal. They offfer a detailed exercise of agent-
based theory building in a system with demic dif-
fusion. Their simulation study demonstrates that 
the degree of environmental knowledge (resulting 
from individual or social learning) and the specific 
pattern of resource distribution can strongly afffect 
dispersal dynamics. Their results suggest that a high 
degree of knowledge can lead to a particular form 
of “tragedy of the commons” (Hardin 1968) where 
agents converge to the same spatial destination, 
leading to instances of local overcrowding. Their 
model is based on the assumption that agents 
find high-resource patches attractive even if such 
a crowding decreases the reproduction rate. As the 

authors suggest, empirical data could be used in 
future models to introduce more detailed mecha-
nisms (e.g., the inhibition of the attraction of high-
resource patches above some population-density 
threshold), possibly leading to a weaker reduction 
of dispersal due to environmental knowledge.

Crema and Lake also show how an increase 
in knowledge is not necessarily always beneficial. 
Their article questions how the size of the sample 
pool of social “teachers” and the uncertainty in 
the payofff attributed to a specific cultural trait can 
profoundly drive cultural evolution. In particular, 
their agent-based model demonstrates that certain 
types of social learning strategy (e.g., copy the in-
dividual with the highest payofff), when associated 
with a large pool of social teachers and high payofff 
uncertainty, can slow the rate by which beneficial 
traits (i.e., traits with higher payofff) spread within 
a population.

The article by Wilder and Kandler also tackles 
the topic of social learning, focusing on whether 
diffferent forms of cultural transmission can gen-
erate discernable patterns in the frequency of 
cultural variants, given the limitations imposed by 
the temporal resolution in the observed data. Their 
results provide useful guidance on the conditions 
where this inferential exercise is possible, as well as 
a cautionary tale on how increasingly incomplete 
samples will decrease our capacity to distinguish 
one mode from another.

Shukurov and colleagues offfer a detailed paleo-
economic reconstruction of premodern agriculture 
for a case study, the Neolithic-Eneolithic Cucuteni–
Trypillia cultural unity (CTU; 5,400–2,700 BC) 
in Ukraine, Romania, and Moldova. Other case 
studies in the future can apply their methodology, 
and probably some of their parameter values (they 
obtain some of them from modern experimental 
farms in other regions). Their results suggest that 
farming settlements of a few thousand people are 
sustainable only if technological innovations, such 
as the ard for land tilling, are available. The lack of 
such technological innovation could explain the 
dominance of small and medium-sized settlements 
during the early CTU. The authors also explain the 
observed lifetimes of early CTU villages. The work 
by Shukurov et al. contains an impressive amount 
of data, of interest in models of the spread and con-
sequent development of farming systems. Further-
more, similar studies for hunter-gather societies 
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could be useful for comparing the advantages of 
farming and hunting-gathering in diverse ecologi-
cal settings, which might lead to new insights on 
the relationship between the environment and the 
relative importance of demic and cultural difffusion.

Finally, the article by Valverde and Solé applies 
many of the concepts of cultural difffusion tackled 
by the other authors and examines the evolution 
of computer programming languages. Their work 
is not limited to historical trends. Indeed, they also 
develop a cellular-automaton model of software 
developers (with innovation, adoption or difffusion, 
and forgetting rules) that reproduces the empirical 
power law observed in the frequency-rank dis-
tribution in programming language popularity. 
Their model also predicts a substantial decline in 
language diversity.

An overall conclusion from the works gathered 
in this special issue is that there are still plenty 
of important problems to be solved by means of 
demic, cultural, and demic-cultural models, which 
deserve further theoretical development and ap-
plication to new case studies.
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