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a b s t r a c t

Summed probability distributions of radiocarbon dates are an increasingly popular means by which to
reconstruct prehistoric population dynamics, enabling more thorough cross-regional comparison and
more robust hypothesis testing, for example with regard to the impact of climate change on past human
demography. Here we review another use of such summed distributions e to make spatially explicit
inferences about geographic variation in prehistoric populations. We argue that most of the methods
proposed so far have been strongly biased by spatially varying sampling intensity, and we therefore
propose a spatial permutation test that is robust to such forms of bias and able to detect both positive
and negative local deviations from pan-regional rates of change in radiocarbon date density. We test our
method both on some simple, simulated population trajectories and also on a large real-world dataset,
and show that we can draw useful conclusions about spatio-temporal variation in population across
Neolithic Europe.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The last decade has seen a rapid increase in the collection and
analysis of radiocarbon dates to infer long-term changes in human
population density. Early efforts based on the visual inspection of
time-series generated from small numbers of uncalibrated dates
(Rick, 1987; Ames, 1991) are now being replaced by statistical
analysis of thousands of dates, shedding new light on long-term
prehistoric population change. The most widely adopted
approach is the summed probability distribution of radiocarbon dates
(SPDRD), and its success is rooted both in the increasing availability
of large collections of 14C dates (e.g. Gajewski et al., 2011; Williams
et al., 2014; Manning et al., 2016; Chaput and Gajewski, 2016 for a
review) and in its enabling of detailed time-series comparisons that
are not possible via other demographic proxies such as settlement
counts. By building a time-series that is based on an absolute, high
resolution chronology (but see Weninger et al., 2015 for the perils
of placing too much faith in chronological resolutions below
200 yrs), the SPDRD makes it possible to directly compare inferred
patterns of prehistoric population change to paleo-climatic re-
constructions (e.g. Shennan et al., 2013; Kelly et al., 2013), and to
attempt large scale, cross-cultural and cross-regional analysis
(Chaput and Gajewski, 2016; Crema et al., 2016; Zahid et al., 2016).
SPDRD-based methods, however, have been subject to criticism

with respect to a potentially wide variety of biases that might
produce spurious patterns in the radiocarbon time series, and
therefore lead to misleading conclusions about population change.
These biases include: 1) sampling error (Timpson et al., 2014); 2)
idiosyncrasies associated with the calibration process (Weninger
et al., 2015); 3) time-dependent taphonomic loss (Surovell and
Brantingham, 2007); 4) spatial and/or temporal differences in
site-to-population ratios; and 5) spatial and/or temporal differ-
ences in sampling intensity. Nevertheless, we would argue that
most of these problems have been partially or fully overcome. The
effects of calibration wiggles and sampling error have been
approached by examining SPDRDs in relation to one or more null
models (Shennan et al., 2013; Timpson et al., 2014; Por�ci�c, and
Nikoli�c, 2016; Crema et al., 2016; Goldberg et al., 2016), rather
than simply qualitatively assessing time-series. The problem of
taphonomic loss has been addressed through the development of
correction formulae (Surovell et al., 2009; Kelly et al., 2013), even if
many researchers still prefer working with data that have not been
adjusted in this way. Differences in site-to-population ratios have
been modelled using ethnographic data (Downey et al., 2014),
while spatial differences in research intensity have been tackled by
means of non-parametric permutation tests (Crema et al., 2016).
While these solutions are certainly not universal and do not over-
come other potential sources of bias (e.g. within-region temporal
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differences in sampling intensity, spatially uneven taphonomic and
deposition processes), they do show how ad hoc analytical solu-
tions can improve the inferential power offered by an SPDRD.

Given the popularity of these techniques, it is not surprising that
some researchers wish to move beyond a single global time-series
analysis and consider local, spatially sensitive versions as well. In
broad terms, attempts at such spatio-temporal analysis of radio-
carbon dates can be grouped into two categories. The first category
includes several studies that compare the SPDRD of multiple re-
gions (e.g. Wang et al., 2014, Bernabeu Aub�an et al., 2016, Crema
et al., 2016; Miller and Gingerich, 2013, Shennan et al., 2013;
Timpson et al., 2014; Gayo et al., 2015) either visually or by
means of some statistical testing (as in Crema et al., 2016). The
second approach is more explicitly spatial, as it is not based on a
priori subdivision of space into subregions, and instead seeks to
reconstruct continuous changes (in space and time) in the density
of radiocarbon dates (Collard et al., 2010; Grove, 2011; Chaput et al.,
2015; Goldberg et al., 2016; Manning and Timpson, 2014; Perez
et al., 2016; Onkamo et al., 2012). In most cases this involves us-
ing some form of kernel density estimate (KDE) with the summed
probability at a given location (site) and time-slice being treated as
a weight (e.g. Collard et al., 2010; Grove, 2011; Manning and
Timpson, 2014; García Puchol et al., 2017). Perez et al. (2016)
offer an alternative solution based on inverse distance weighting
and per raster-cell site frequency. They chose a coarse chronological
resolution of 2000 years, which effectively treats each site as a bi-
nary presence/absence, but their approach can, at least in principle,
be applied to finer temporal intervals, substituting site frequencies
for summed probabilities. Onkamo et al. (2012) adopt a more so-
phisticated solution using a hierarchical Bayesian model with a
conditional autoregressive model. Their solution is robust to the
problem of sparse data (see below) and hence ideal in many
archaeological contexts, but their implementation requires the use
of binary data (i.e. presence/absence), which they obtained by
examining whether the posterior mean of the calibrated estimate
of each 14C date was within predefined discrete chronological
phases. The solution adopted by Onkamo and colleagues is broadly
in line with similar approaches to spatial analysis that quantify the
effect of environmental covariates (e.g. Bevan et al., 2013; Eve and
Crema, 2014), and useful in cases of coarser chronological resolu-
tionwhere the way each calibrated date is assigned to one phase or
another only has a minor influence on the analytical outcome.

This incipient interest in spatio-temporal analysis of 14C dates
does however raise a series of new challenges. First, most of the
methods proposed so far (except for Onkamo et al., 2012) generate
density maps that are primarily visualisations, usually without any
accompanying formal assessment of whether a specific pattern is
genuine or a spurious artefact of sampling error. This is exactly the
same problem that led to the development of hypothesis-testing
approaches in the analysis of SPDRD in the first place (see
Timpson et al., 2014), except that the transition from discrete re-
gions to a continuous space entails a substantial reduction in the
per unit sample size. Thus, other things being equal, spatio-
temporal analysis of 14C dates should be affected more strongly
by sampling error bias, and we should therefore be more rather
than less cautious about what we are visualising. Second,
increasing the geographic extent of the analysis will also increase
the chance of a spatially heterogeneous sampling intensity of
radiocarbon dates. A quick glance at many of the large datasets of
radiocarbon dates shows spatial differences in the density of 14C
dates that are remarkably in line with modern state boundaries
(e.g. Wyoming in the CARD dataset or Ireland in the EUROEVOL
dataset), reflecting regional diversity in research traditions. This is
certainly not a new problem in archaeology (see Hodder and Orton,
1976; Fitzpatrick, 1987 for early discussions), and is common to
other fields of study (e.g. Syfert et al., 2013, Stolar and Nielsen, 2015
for problems and solutions in ecological models of species distri-
butions). Chaput et al. (2015) have recently proposed a solution
applicable for spatial density estimates of radiocarbon dates. Their
solution consists of generating a sampling intensity map using all
the site locations (thus irrespective of their temporal stamp) and
then dividing the weighted KDE of each temporal slice by this map,
effectively de-trending the spatial variation in research intensity.
While the density maps are still assessed exclusively in visual
fashion, the approach proposed by Chaput and colleagues solves an
often-neglected problem in the spatio-temporal analysis of
archaeological data in general.

In this paper, we contribute to this growing research agenda by
introducing a new technique based on local spatial statistics (Getis
and Ord, 1996; Premo, 2004; Crema and Bianchi, 2013 for some
archaeological examples), that combines the hypothesis-testing
approach proposed by Shennan et al., (2013) and the
permutation-based null model detailed in Crema et al. (2016). This
new method can determine whether there are any locally and
statistically significant positive or negative deviations d which we
will respectively refer to as hot and cold spots d from the null
model. The null model in this case is represented by the global rate
of growth within the study region as a whole. Thus, if there are no
spatial differences in the rate of increase or decrease in the density
of 14C dates we should not expect to observe any hot or cold spots.
The presence of hot or cold spots would conversely indicate that
some regions experienced a higher (hot spots) or lower (cold spots)
rate of growth compared to the global trend.

With the above goals inmind, this paper is structured as follows.
Section 2.1 below first details the proposed method, for which
source code and sample scripts can be found in the supplementary
information. We then test our method on: 1) a simulated dataset
where differences in sampling intensity and spatio-temporal pat-
terns of population density are known, and 2) radiocarbon dates
associated with Neolithic Europe, using the EUROEVOL database
(Manning et al., 2016). We then discuss the results, considering the
benefits and the limits of the proposed method.
2. Materials and methods

2.1. Methods

The core steps of the method proposed here consist of: 1)
developing a proxy for local demography by means of a weighted
SPDRD; 2) computing rates of growth within defined chronological
intervals; and 3) comparing local rates to a global one (the null
model) thereby identifying episodes of positive (hot spots) and/or
negative (cold spots) deviations. The program code, written in R
statistical computing language (R Core Team, 2016), is available
online as an R package (https://github.com/ahb108/rcarbon), while
the electronic supplementary material contains the scripts to
reproduce the results in themanuscript and a brief tutorial (see also
https://github.com/ercrema/JAS2017_spatialSPD).
2.1.1. Generating a locally weighted SPD
Given a data set consisting of i¼1,2, …L site locations, a “local”

SPDRD for each site location i is computed in two sequences of
steps. Firstly, a site-level SPDRD is computed as follows:

1. Samples associated with each site i are “binned” (i.e. grouped)
based on the Euclidean distance of their radiocarbon age using a
complete linkage agglomerative hierarchical method with a cut
off value of k years.

https://github.com/ahb108/rcarbon
https://github.com/ercrema/JAS2017_spatialSPD
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2. Samples associated with each bin are then calibrated, and their
probabilities summed and normalised to unity.

3. The results are then summed at the site level, so that the sum of
the probabilities associated with each site is equal to its number
of bins.

These steps are equivalent to the SPDRD proposed in previous
studies (Shennan et al., 2013; Timpson et al., 2014). The locally
weighted SPDRD consists of combining the probability of neigh-
bouring sites as follows:

4. For each possible pair of locations i and j calculate theweightwi,j

with the following equation (Fotheringham et al., 2000:111):

wij ¼ exp

 
�
d2ij
h2

!
(1)

where dij is the great arc distance between i and j and h is a user-
defined Gaussian kernel bandwidth. This is a widely used formula
(though alternative distance decay functions are available, see
Fotheringham et al., 2000) where the contribution of neighbouring
sites declines fractionally and gradually as a function of distance.

5 Define T temporal slices and sum the probabilities within each
interval for each location i

6. For each location i and each temporal slice compute the
weighted sum of all probabilities resulting from step 5 using the
weight obtained in step 4:

wSPDRDi;t ¼
XL

j
wij$SPDRDj;t (2)

where SPDRDi,t is the summed probability of radiocarbon dates at
location i at time-block t. It is worth reminding that the focal site i is
included in the set L of all sites, and given eq.(1) its contribution the
summed probability is not fractional (as wij reduces to unity when
dij ¼ 0).

The result of steps 1e6 will generate L local weighted SPDRDs,
with the probabilities assigned to neighbouring sites added to the
one associated to a given focal site i. The exact contribution of
neighbouring sites depends on their distant to i; sites in proximity
will have greater weights, whilst sites located at larger distances
from i will have virtually no contribution to the local SPD of i.

2.1.2. Estimating rates of growth between temporal slices
The next step is the calculation of the geometric growth rate at

each location for each abutting pair of temporal slices. This is given
by the following equation (cf. Brown, 2017, eq. (13)):

rt ¼
�
wSPDRDtþ1

wSPDRDt

� 1
Dt

� 1 (3)

where wSPDRDt and wSPDRDtþ1 are the local weighted SPDRDs at
two abutting time slices and Dt is the length (duration in time) of
each slice. The final result will thus be a vector with Te1 rates of
changes for each of the L site locations.

2.1.3. Permutation test
The permutation algorithm consists of randomly shuffling the

locations (i.e. sites) associated with each local SPDRD, before
executing the application of the spatial weights and computing the
local growth rate. This process is iterated n times, so that for each
location i, at each transition t to t þ 1, there is an observed local
growth rate Oi,t and a vector S1,i,t, S2,i,t … Sn,i,t of simulated growth
rates generated from the random permutation.
2.1.4. Computing significance of hot/cold spots
We define as hot spots all locations exhibiting an observed local

growth rate that is significantly higher than the distribution of
simulated local growth rates. It follows that cold spots are locations
where the observed local growth rate is lower than the randomised
set. P-values for both are computed using the formula (r þ 1)/(nþ1)
(North et al., 2002), where n is the total number of simulations, and
r is the number of replicates where the Oi,t � Si,t (for the p-value
phigh in the hot spots) or Oi,t � Si,t (for the p-value plow in the cold
spots).

Given that in most cases there are large numbers of site loca-
tions, there is a high risk of type I error (incorrectly rejecting a true
null hypothesis) due to multiple-testing. As for several geo-
statistical analyses (cf. Anselin, 1995), p-value adjustment methods
such as Bonferroni's correction are in this case too conservative and
inflate type II errors (failing to reject a false null hypothesis). Here
we approach the problem in terms of false discovery rate
(Benjamini and Hochberg, 1995, 1997) computing the q-values qlow
and qhi for each location. While a p-value of 0.05 implies that 5% of
the tests will result in false positives, a q-value of 0.05 means that
5% of the results that have a q-value less than 0.05 are false positive.

2.2. Materials

We examined our new method by using (1) an artificially
generated data-set with a known pattern of spatial heterogeneity
and known population trajectories through time and (2) an
archaeological case study from Neolithic Europe, using the EURO-
EVOL dataset (Manning et al., 2016).

2.2.1. Simulated data
We considered a 40 � 40 square shaped study area divided into

four equally sized sub-regions A, B, C, and D and a temporal interval
of 7000 to 3000 BP. We then assumed three distinct population
dynamics (see Fig. 1-a and 1-b): a rise and fall pattern (for region B),
a delayed population increase (for region C); and an intermediate
and steady population growth (for regions A and D). Based on these
trajectories we then generated 5000 data points across space and
time, aggregating coordinates to the nearest integer. We then
converted the calendar dates into radiocarbon dates through back-
calibration using an error estimate randomly drawn from a uniform
distribution between 20 and 60 years. The resulting data set con-
sisted of 5000 radiocarbon dates at 1387 unique locations in space.
We also created a second set where half of the samples in regions B
and D were randomly removed, mimicking thus a spatially het-
erogeneous sampling intensity.

The spatial permutation tests were executed for both simulated
datasets, using: a 1) temporal bin size k of 200 (i.e. k ¼ 200); a 2)
spatial bandwidth of 6 units (i.e. h ¼ 6); 3) temporal slices of 500
years (i.e. Dt ¼ 500); and 4) 10,000 permutations to calculate the
local p and q-values. Dates have been calibrated and back-calibrated
using IntCal13 (Reimer et al., 2013), and were not normalised for
the creation of the SPDRDs, following Weninger et al., 2015
(although the high setting of Dt reduces the difference between
normalised and unnormalised SPDRDs).

2.2.2. Neolithic Europe
Radiocarbon dates from Europe have been extensively used in

the past to infer population change (Gamble et al., 2005; Shennan
and Edinborough, 2007; Collard et al., 2010; Shennan et al., 2013;
Timpson et al., 2014), often sparking debates on whether they
constitute a valid proxy for population change in the Neolithic or
not (see e.g. Contreras and Meadows, 2014, M€okk€onen, 2014,
Tallavaara et al., 2014, Torfing, 2015, Timpson et al., 2015 for



Fig. 1. a) relative change of population density across time in the four regions; b) SPDRD obtained from sample 14C dates randomly drawn with probabilities proportional to the
population density depicted in panel a; c) expected rate of growth for each transition (cf panel b) based on the population trajectories shown in panel a; d) observed rate of growth
computed from the SPDRD (cf panel b).
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arguments on both sides, see also similar debates for prehistoric
Australia by Attenbrow and Hiscock, 2015, Hiscock and Attenbrow,
2016, Williams and Ulm, 2016, and Smith, 2016). Here we use the
recently published EUROEVOL dataset (Manning et al., 2016), which
has been extensively examined at various regional scales (see
Shennan et al., 2013; Timpson et al., 2014). These studies show
differences in the timing of positive and negative deviations
(interpreted as population booms and busts) from a null model of a
fitted exponential growth. For example, during the first half of the
7th millennium BP, Wessex and Sussex show a negative deviation,
whilst other regions such Rhone Languedoc, Rhineland-Hesse, and
Paris Basin show a positive deviation (see Fig. 3 in Shennan et al.,
2013). For the present study we narrowed our focus to a temporal
scope between 8000 and 5000 cal BP, examining a total of 7765 14C
dates from 2268 sites (which constitutes a subset of the database
comprising a sample with a14C age between 8500 and 4500) and
using temporal slices of 500 years (6 slices and 5 transitions).
Following previous work (Shennan et al., 2013; Timpson et al.,
2014) we used a bin size of 200 years (k ¼ 200) to reduce the ef-
fect of inter-site variability in sampling intensity. We explored
various bandwidth values for the spatial kernels; here we illustrate
the results for h ¼ 100 km which offers a good balance between
regional and continental scale of analysis. As for the simulated
dataset we obtained our significance levels and false discovery
rates using 10,000 simulations; all dates were calibrated using
IntCal13 (Reimer et al., 2013) without normalisation.
3. Results

3.1. Simulation study

Fig. 1 shows the SPDRDs of the four regions (Fig. 1-b) and their
corresponding growth rate for each of the seven transitions
(Fig. 1d). The largest divergence in growth rates can be observed
from transition V onwards, when the four regions (and the three
trajectories) start to strongly diverge. The results of our spatial
analysis (Fig. 2) successfully highlight this pattern, with the highest
concentration of hot-spots (higher than expected growth rates)
within region C, and cold-spots (lower than expected growth rates)
within region B at the transitions V, VII, and VII. More importantly
the randomly thinned dataset revealed the same overall pattern,
indicating that the method is sufficiently robust to handle uneven
sampling intensity. A smaller hot-spots area has also been also
identified between regions C and D at transition III in the full
dataset, as well as a cold-spot area in region B, again at transition III,
in the thinned dataset. Both patterns are also expected from the
underlying population fromwhich the radiocarbon dates have been
sampled (Fig. 1-a and 1-c).
3.2. Neolithic Europe between 8 k and 5 kBP

Previous work on the same dataset, has shown that at conti-
nental scale the SPDRD portrays a general exponential growth, with
a “boom” starting from ca. 6000 cal BP, followed by a “bust” at



Fig. 2. Results of the spatial permutation test for the full and thinned (uneven sampling intensity across space) datasets.
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around 5000 cal. BP (cf. Fig. 2 Shennan et al., 2013). The two events
correspond to the transitions IV (from 6.5-6 k BP to 6e5.5 k BP) and
V (from 6 to 5.5 k BP to 5.5-5 k BP) in our scheme (Fig. 3), with the
latter being the only casewhere the general growth rate is negative.

Both Shennan et al., 2013 and Timpson et al., 2014 have sug-
gested the presence of divergent population trajectories, with
different timings in population boom and busts across Europe.
However, because of the differences in sample sizes there was no
common standard for comparing these from one region to the next.
Fig. 4 shows the pattern, with substantial variation in the local rate
of growth across our samples.

The spatial permutation tests show little evidence of local hot/
cold spots during the first three transitions (Fig. 5). The few ex-
ceptions are all small cold spots: western Ireland in transition I
(from 8 to 7.5 k BP to 7.5-7 k BP), Netherlands in transition II (from
7.5-7 k BP to 7e6.5 k BP), corresponding to the effective aban-
donment of the Low Countries by farming communities at the end
of the LBK (Cromb�e and Vanmontfort, 2007) until the second half of
the 7thmillennium BP and Central Germany in transition III (from 7
to 6.5 k BP to 6.5-6 k BP; cf. Fig. 3 Shennan et al., 2013, Fig. 3
Timpson et al., 2014). This downturn marks the end of the tradition
of Danubian cultures that began in the regionwith the LBK, prior to
the beginning of the southeastern TRB c.5800 BP; the demographic
decline is also reflected in the pollen record (Müller, 2001, 92;
Zimmermann et al., 2009).

The subsequent transition IV (from 6.5-6 k BP to 6e5.5 k BP) is
instead characterised by strong spatial unevenness in growth rates.
France, Lowlands, and Moravia are all cold spots, while Britain,
Ireland, Denmark, southern Sweden, and Central Germany are all
hot spots. The spatial pattern of the hot spots captures in this case
the expansion of farming in Britain and in the Baltic area (northern
group of the TRB), and a period of renewed growth in Central
Germany associated with the construction of a large number of
enclosures (Müller, 2001), while the cold spots over large parts of
France correspond to a period of stability in the late Chassey
complex, which was at its peak at the end of the 7th millennium BP
(see contributions to Perrin et al., 2016); it appears as a cold spot
because it contrasts so markedly with the overall pattern of growth
seen in this period (see Fig. 3a). The transition from the first to the
second half of the 6th millennium cal BP (transition V) is



Fig. 3. SPDRD and observed rate of growth for the EUROEVOL dataset.

Fig. 4. Local geometric growth rate for each transition in the EUROEVOL dataset (I: 8e7.5 k to 7.5e7 k BP; II: 7.5-7 k to 7e6.5 k BP; III: 7e6.5 k to 6.5-6 k BP; IV: 6.5-6 k to 6e5.5 k
BP; and V: 6e5.5 k to 5.5-5 k BP).
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characterised by a highly fragmented picture, with series of highly
localised positive and negative deviations from the global trend.
This includes hot spots in southwest France, where the Late
Neolithic from c.5500 to 5000 BP is characterised by large numbers
of multiple ditch enclosures, at least some of which were probably
fortified villages (Laporte et al., 2014) and Central Germany, where
expansion continues (Müller, 2001); and cold spots in Scotland,
Brittany, and Rhineland/Southern Germany; the latter is also
identified by Zimmermann et al. (2009) on the basis of the disap-
pearance of settlement nuclei in the region. The evidence from
central-eastern Scotland and Brittany is more equivocal. Recent
work (Bevan et al. submitted) suggests that in Scotland as a whole
population did not decline until the very end of this period, while
for Brittany there are no other up-to-date study to make a com-
parison with this study.

Overall, however, the results suggest that some regions were
declining at the same time as others were growing, raising
important questions as to why this should be the case and pointing
to new directions for research. Without a comparative method of
this kind, such questions would not even arise.

4. Discussion

The results of both case studies indicates that the spatial per-
mutation test of the SPDRDs is able to identify instances where the
local rate of growth significantly deviates from the general trend



Fig. 5. Spatial permutation test of the EUROEVOL dataset (I: 8e7.5 k to 7.5e7 k BP; II: 7.5-7 k to 7e6.5 k BP; III: 7e6.5 k to 6.5-6 k BP; IV: 6.5-6 k to 6e5.5 k BP; and V: 6e5.5 k to 5.5-
5 k BP).
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observed across all regions. The method takes into account differ-
ences in the spatially uneven research intensity which characterise
most archaeological datasets at regional scales and above, and
hence is ideally suited for cross-regional and cross-cultural
analysis.

It is worth remembering that the null hypothesis in this case is a
spatially homogenous rate of growth across space, and hence
strictly speaking the hypothesis should be considered false a priori.
Hot spots and cold spots are detected in regions where there is a
sufficiently large effect size (i.e. a strong deviation from the null) or
a high density of sites and 14C dates. Our method is able to reduce
type I error via the adoption of q-values, but it will inevitably suffer
a fairly high level of type II error (i.e. failing to reject a false null
hypothesis). Indeed, in our first case study we have no instances of
false positives, but we have several transitions and locations with
false negatives. This is, to some extent, an inevitable limitation of
the proposed method, which is tailored to reduce the kinds of
unsupported claims that are typically encountered in spatial and
non-spatial analysis of the SPDRDs. To put it in other words, the
spatial permutation test proposed here, along with other methods
based on Monte Carlo simulation (Timpson et al., 2014) or per-
mutation routines (Crema et al., 2016) should be used as an
exploratory tool to detect statistically significant anomalies in the
SPDRDs, avoiding simple visual inspections of the data. It is also
worth noting that the null hypothesis being evaluated will change
as a function of the geographical and temporal extent of the study
area, and hence the location of hot-spots and cold-spots might
change accordingly. The choice of the temporal and geographical
scope of the analysis should hence be carefully justified and
appropriately considered in the interpretation of the results. We
also acknowledge that the method requires the setting of several
free parameters, most notably k (the clustering cut-off value for
site-level binning of 14C dates) and h (the parameter detailing the
fall-off of the spatially weighted sum of 14C dates), which should
ideally be justified based on archaeological grounds or explored
through sensitivity analysis.
Determining whether the hot spots and cold spots detected by

the spatial permutation test are genuine episodes of local diver-
gence in past population dynamics, the result of other forms of bias
(e.g. a temporally uneven sampling intensity or variations in site-
to-population ratio), a mixture of the two, or even processes that
are unrelated to past demography is beyond the scope of these
analyses. For the EUROEVOL case, independent lines of evidence
such as the juvenility index of cemetery data have already
confirmed the broad trends depicted by the SPDRDs (Downey et al.,
2014). Ultimately the direction to take is to compare multiple
proxies of population change and tomake amore explicit definition
of biases (Davies et al., 2016) and confounding variables (c.f.
Kramer-Schadt et al., 2013 in species distribution modelling) either
to calibrate (as in Downey et al., 2014) or to test specific hypotheses
of demographic changes.

5. Conclusion

The increasing availability of large digital datasets is pushing
archaeology into unexplored territories (Bevan, 2015), where
comparative and synthetic research can offer new perspectives on
key questions about long-term change in human populations
(Kintigh et al., 2014). This is an exciting but difficult venture, where
data originally collected for a wide range of different purposes are
aggregated to answer new questions. The reward is potentially
great, but its realisation requires disciplinary investment in the
development of methods dedicated to handling the idiosyncratic
properties of an archaeological record that has been collected for
over 100 years and taking into account its uncertainty; the creation
of bespoke techniques is no longer optional.

The analysis of large collections of 14C dates is the prototypical
example of this new line of comparative and synthetic research.
This paper has introduced a possible solution for dealing with a
particular form of research bias d the spatially uneven sampling
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intensity of radiocarbon dates d that is typically encountered
when we seek to carry out spatio-temporal analysis of radiocarbon
dates. Ourmethod, tested on both synthetic and empirical data, can
detect instances where local density of radiocarbon dates increased
or decreased at a significantly higher or lower growth rate
compared to the general pan-regional trend. We note that detect-
ing these divergences is just the first step for a further exploration
of the local archaeological record, to establish whether the patterns
can be corroborated, in the way briefly illustrated above. Indeed,
the comparative and synthetic research we advocate can be truly
successful only when its novel insights can drive further research at
sub-regional scale, which in turn should feed new exciting lines of
enquiry, for example attempting to explain comparative growth
trajectories that have to be approached at the macro-scale.
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