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a b s t r a c t

The assessment of spatial patterns in archaeology is hampered by a number of constraints, one of the
most serious of which is the intrinsic temporal uncertainty associated with most of the archaeological
record. Different types of chronological definition or different degrees of temporal knowledge will
suggest different kinds of spatial pattern, ultimately obscuring and restricting our interpretation of the
background process, especially in cases where we are seeking a diachronic perspective. This paper
addresses these problems by adopting both a probabilistic approach and a more standardised framework
for diachronic analysis. First, we define the notion of temporal uncertainty and explore its analytical
consequences. Second, we consider two methods by which it might be formally quantified, emphasising
(a) the advantages of probability-weighted spatial analysis and (b) the comparison of alternative spatio-
temporal patterns via Monte-Carlo simulation. Finally, we apply these methods to a case study that
considers the distribution of Middle to Late Jomon (ca.5000–3000 BP) pithouses recorded in the Chiba
New Town area of Japan.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The application of spatial analysis in archaeology has in most
cases relied upon methods adopted from neighbouring disciplines
such as geography, ecology and epidemiology. The statistical tools
employed in these fields frequently involve a series of assumptions
whose importance has been underestimated, if not wholly ignored,
in archaeological applications. Point pattern analysis refers to one
such group of methods that examines the spatial configuration of
point observations across a study area and, potentially, the under-
lying process behind its formation. Typically, point pattern analysis
assumes that: (1) the spatial pattern in question can be reasonably
simplified as a series of zero-dimensional events (points) located in
a Euclidean space; (2) the observed point pattern is a samplewhose
relationship with the overall population can be evaluated; (3) the
spatial pattern is stationary (i.e. the mean and the variance of the
point process is constant within the studied area (Bailey and
Gatrell, 1995:33); (4) the temporal domain can safely be ignored
since all the events are contemporary and do not have variable
duration in time. Each of these assumptions have been discussed in
the archaeological literature, both from methodological and theo-
retical perspectives (for general discussions of point pattern

analysis: Orton, 2005; for the relation between sample and pop-
ulation: Orton, 2000; for problems related to non-stationary data:
Bevan and Connolly, 2009) but surprisingly, despite the presence of
debates and proposals for possible solutions (Castleford, 1992; Daly
and Lock, 1999; Lock and Harris, 2002; Johnson, 2004; Bevan and
Conolly, 2006, etc.) very little effort has been placed on the formal
integration of the temporal dimension into practical archaeological
analysis.

This paper aims to tackle this pressing issue, by (1) addressing
the analytical consequences of temporal uncertainty; (2) proposing
new approaches for assessing spatial patterns within a spatio-
temporal framework; (3) exploring these issues via an applied case
study from prehistoric Japan.

2. Consequences of temporal uncertainty

Most of the current analytical procedures dealing with time are
based on some form of statistical comparison (or informal visual
description) of successive, artificial snapshots defined by the
researcher. The intrinsic problems associated with this approach
are captured in Fig. 1, where spatio-temporal data is visualized in
a three-dimensional space such that x and y correspond to two
spatial dimensions and t to the temporal dimension. Each archae-
ological event (e.g. a site, a feature etc.) is described as a vertical line
whose length corresponds to its duration. An archaeologically
observed pattern of points (e.g. settlements or artefacts) can be
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better understood as a projection of the events on the upper face of
a time-cube, which is differently defined depending on the nature of
our archaeological knowledge. This might be based, for instance, on
pottery typology or lithic technology identifying a cultural phase
corresponding to a temporal block.

Several problems affect the analysis of any observed pattern
defined in this manner. Firstly the projection plane is two-dimen-
sional. Thus any temporal (and therefore by implication, spatial)
information bounded within the time-cube is lost or degraded,
since the data are treated cumulatively and observed as contem-
porary. Secondly, the temporal allocations of most events are fuzzy
due to the intrinsic uncertainty of archaeological data. As a conse-
quence, the association of an event with a specific time-cube is not
always certain. Thirdly, different time-cubes often define different
projection planes (or snapshots). The direct comparison of different
patterns is therefore highly problematic, since each is heavily
dependent on the shape of the time-cube.1 Lastly, the definition of
these time-cubes is often subjective and ambiguous, since each is in
fact an artificial subdivision of the time-continuum based on the
analyst’s preferred method of dating, leading to the observation of
potentially different patterns by different analysts.

The visual representation offered in Fig. 1 demonstrates the
problems associated with any straightforward assumptions of

synchronicity that often underlie applications of spatial analysis in
archaeology, especially those operating with coarse temporal scales
or those seeking to understand diachronic processes. Advanced
analytical tools that address the temporal dimension directly and
that are used in other fields such as ecology and epidemiology (e.g.
Knox’s Index, Mantel’s Index, Spatio-Temporal K Function; see
Bailey and Gatrell, 1995) are rarely feasible in these archaeological
cases, because their core assumption is that we have exact
knowledge of the spatial and temporal extent of each event. In
other words, these tools do not have the ability to integrate,
formally and quantitatively, the uncertainties typical of archaeo-
logical data.

The development of alternative approaches is necessary before
we can understand archaeological datasets properly. The present
paper therefore proposes a probabilistic approach to spatial data
analysis that can tackle both the problem of temporal uncertainty
for single events and the problem of unequally sized temporal
blocks.

3. Case study

For our case study, we consider the western part of the Tokyo
Bay area (Fig. 2), where a number of significant changes in hunter–
gatherer settlement patterns can be documented towards the end
of the mid-Holocene. In particular, several scholars (Imamura,
1996; Habu 2004; Habu, 2008 for general references) have noticed
abrupt socio-economic, cultural and environmental changes during
the transitional phase between the Middle (ca. 5000–4000 BP) and
Late (ca. 4000–3000 BP) Jomon periods. The objective of spatial
analysis in this case study is to test the hypothesis proposed by
certain authors (e.g. Kano, 2002) that an abrupt transformation
occurred in the spatial distribution of pithouses during the Kasori
EIII pottery phase, in which a pre-existing settlement pattern of
pithouses, typically arranged in annular configurations, became
disaggregated into sparser and more irregularly-distributed resi-
dential units, perhaps due to an increase in residential mobility (see
Toizumi, 2007 for malacological support of such a hypothesis).

The chronological subdivisions used in this case study are con-
structed from typological studies of Jomon pottery. On the basis of
the quality and the quantity of the diagnostic pottery sherds
recovered from excavated contexts, different levels of chronological
resolution can be provided for each pithouse, ranging from the sub-
phase (<50 year resolution) to the broader period (ca. 1000 year
resolution). The duration of these pottery phases has been estab-
lished via several different sources (Minami, 2002; Kobayashi,
2004) in order to cover both the Middle and the Late Jomon period
and to provide the most reliable absolute chronological sequence
possible for each phase. A recent spread of AMS radiocarbon dates
and proper calibration has also allowed the creation of a fine-
grained chronological sequence for the Middle Jomon period in the
south-west of Japan (see Kobayashi, 2004), however the same
resolution and precision is not available for the subsequent Late
Jomon period, and the exact temporal correlation with the south-
eastern Kanto (where the present study area is located) is not
always clear. Thus, in order to provide a long-term assessment of
changes in settlement patterns, the chronological sequence
proposed by Minami (2002) has been used for the present study.
Minami’s sequence provides a coarse-grained, pottery-based peri-
odization that allows integration of Late Jomon period. However,
this chronology offer dates that are typically ca. 400 years later in
absolute terms, than the more reliable Kobayashi’s sequence.
Where available, the relative duration of Middle Jomon pottery
phases have been adapted and corrected on the basis of the relative
and proportional length offered by Kobayashi. Thus at this stage
although the duration of pottery phases appears to be the best one

Fig. 1. A three-dimensional schematic representation of a spatio-temporal process.
The archaeologically observed pattern is the projection of different archaeological
events in a bi-dimensional plane determined by a time-cube bounding a portion of
space-time. Since the observed pattern is a mere projection, information regarding the
spatio-temporal processes within the time-cube is lost. Events occurring once (a), in
multiple episodes (b), in more than one time-cubes (c) or lasting for the entire exis-
tence of the specific time-cube (d), are all treated equally within the bi-dimensional
representation of the archaeologically observed pattern.

1 It is worth noting that the time-cube might have different extents both in time
and space, for each archaeologically defined period. In fact, relative chronology is
often based on characteristics that might have a varying spatial distribution.
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currently achievable, the allocation of these to an absolute time line
is more difficult and involves some discrepancies of ca. 400–500
years. The authors are aware of the possibility of alternative
suggestions for the temporal duration of these pottery phases and
also the weakness of a relative chronological framework that is,
ultimately, incapable of supporting comparisons with phenomena
outside the specific case study. However, in other ways, the study
area remains an almost ideal archaeological case where varying
levels of temporal knowledge are present, and it is the spatio-
temporal assessment of such datasets d rather than the resolution
of the debate over the late Middle Jomon settlement pattern
transition d that is the main aim of the present study.

The location of individual pithouses is used below as the
primary unit of analysis because it avoids the often-problematic
ontological definition of an ‘archaeological site’ that might exist
were we adopt a coarser spatial scale and consider larger aggre-
gates of pithouses as individual observations. The areas formally
explored by open area excavation have been used as window of
analysis in cases where edge correction formulae are a part of the
statistical methods we deploy.

The total extent of the study area considered here is ca.605 ha, of
which 14% has been extensively excavated. A total of 386 published
pithouses (see Appendix A for references) can be attributed to the
Middle and Late Jomon periods and used for the present analysis,
and a smaller study area within this, of low temporal uncertainty
(see below), has further been selected for some steps in the
analysis.

4. Quantifying uncertainty

The application of probabilistic weighting is probably the most
straightforward solution to some of the problems raised in the
theoretical discussion above. The core concept behind this
approach is that, rather than date an archaeological event e with
absolute certainty of presence or absence at a particular time step,
we can define a more flexible existence value w, that ranges

somewhere between 0 (absolute certainty of non-existence) and 1
(absolute certainty of existence) in a temporal snapshot whose
duration is defined by Dt. The value of Dt will assume a central role
since, all other things being equal, w will be positively correlated
with it, and higher values will therefore be associated with coarser
temporal granularity (higher Dt).

Several alternative methods for the definition of w have been
proposed in the literature. For instance, Lock and Harris (2002)
based their method on the integration of different sources of time
definition, each providing an independent attribution of the value
w. Thus, for instance, the probability of existence of a site x at time
tn might have a value of 0.9 according to radiocarbon dating, 0.5
according to the pottery typology based relative chronology and 0.6
according to other artefact-based dating. The final w of the specific
site (called p(use)-values in the original paper) is defined either by:
(1) the use of a simple average, (2) the use of a weighted average, or
the (3) the choice of the highest value for the specific period. Since
the weighting process is conducted for each temporal snapshot, the
total sum of w across all the time steps can be bigger than 1 if the
existence of the event extends across more than one time step.

The aoristic weightingmethod proposed by Ratcliffe (2000), and
introduced into archaeology by Johnson (2004), provides a deeper
methodological insight into the actual computation of w. The main
concept in this case is the time span of an event, which is defined as
the chronological range within which the event has occurred. In
archaeology the boundaries of this will be determined by
a terminus ante quem and a terminus post quem. All other things
being equal (e.g. ignoring the duration of the event), different events
will have different time spans according to the quality of our
temporal knowledge: larger time-spans will be created where
there is high uncertainty and shorter time-spans with the uncer-
tainty is lower. By assuming that the event is either instantaneous
or has a duration which can be considered marginal in comparison
to Dt, aoristic analysis simply provides a value which represents the
probability of existence for each defined temporal block tn. This is
obtained by the following equation:

Fig. 2. The case study area and the sub-sample dataset used for Monte-Carlo simulation.
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weðtnÞ ¼
Dt

ðbe % aeÞ
(1)

where w is the aoristic weight of the event e at time tn, Dt is the
temporal resolution (the duration of each time-block), and b and
a the terminus ante and post quem respectively, with all values
rounded to the temporal resolution. Aoristic analysis assumes an
equal distribution of possible existence across time, thus two
events having identical temporal spans will yield the same w for
each of their temporal blocks. This can have some negative
consequences when a large portion of the sample data have the
same temporal spans and occupy the same temporal blocks,
because the resulting aoristic analysis will suggest an apparent
‘‘homogeneity’’ across time that is in fact a consequence of the
temporal structure of the data, rather than a real feature of the
process under investigation (see below for an example).

An additional property, and a necessary precondition, of aoristic
analysis is that the value We, corresponding to the sum of all the
aoristic weights w1.wt of a single event across its time steps t,
must be equal to 1. This condition differs from the properties of the
method devised by Lock and Harris (2002), where such value can
exceed or be minor than 1.

This aoristic approach brings both advantages and disadvan-
tages: for example, it is unable to combine, quantitatively and
formally, multiple sources of temporal knowledge, in contrast to
the method proposed by Lock and Harris that can manage multiply
structured and complex datasets, since there are no restriction on
the value ofWe. Theweakness, and at the same time the strength, of
the Lock and Harris approach is therefore the absence of formality
in the weight attribution process. On one hand, this provides the
opportunity to handle ‘intuitive knowledge’ (Lock and Harris, 2002)
in association with, for example, formal radiocarbon probability
distributions, but on the other hand, the subjective approach might
produce biases that could lead to artificial trends in the spatio-
temporal distribution.

Our case study adopts a resolution of 40 time steps each of 50
years duration, starting with period t1 corresponding to 2900 BC
and ending with t40 ¼ 950 BC on the basis of Minami’s scheme. As
stated above, this should be taken as the relative chronological
length of each pottery phase and not as an absolute dating scheme,
since, for instance, timestep t9 is 2500 BC according to Minami and
2950 BC according to Kobayashi. The adoption of a 50 year reso-
lution is a pragmatic but empirically justifiable choice which
measures the approximate and rounded duration of pottery phases
and allows us to ignore the varying lifespans of individual pithouses
(available ethnographic analogies suggest that the latter were
probably much shorter than our chosen temporal resolution: see
Watanabe, 1986). From an interpretative perspective, our analysis
will focus on the specific moment in time when the residential
units were constructed and will aim to assess the spatial structure
of this relative locational choice.

Fig. 3a demonstrates how the simple sum of aoristic values for
each temporal block can improve our knowledge of pithouse
density and offer a more formal diachronic framework.Without the
aoristic weighting we are forced to find the optimal balance
between the chronological resolution and the sample size, with
a range of possible combinations from the coarsest temporal
resolution/largest sample size to the finest chronological resolu-
tion/smallest sample size. Fig. 3b shows an example of such
a representation that is limited by: (1) the choice of a ‘sample’ (in
this case of 59.8%) of the total available data; (2) a chronological
framework entirely based on pottery phases, each with a different
absolute chronological length. The aoristic approach, on the other
hand, provides regular chronological breaks (in this case equal to
50 yrs) and integrates probabilistically our information about the

entire original sample, providing the best platform for a diachronic
assessment. Dynamics which were previously invisible, such as the
slight decrease of pithouse numbers within the Middle Jomon peak
(t10) can now be observed and quantified.

Interestingly, the sum of aoristic values illustrates the problem
arising from an equal distribution of temporal spans and the
resulting difficulty of discerning patterns in cases where the time-
spans and weights assigned to each observation are very similar
(see above). This is clearly visible for the time steps t21–t22, where
most of the events are characterized by an aoristic weight of 0.5 for
each timestep. Changes between the two time steps appear to be
minimal, but this apparent stasis is a direct result of the aoristic
distribution (and our current chronological resolution), rather than
an indication that there really is no change over these temporal
phases.

4.1. Assessing patterns of uncertainty

The distribution of aoristic weights is, in many instances, likely
to be inhomogeneous in both spatial and temporal terms, with the
possibility of clusters of ‘high’ knowledge at particular points in
time and space where the quality of data is unusually good. Since
the patterns discernable from aoristic weighting reflect a combi-
nation of both the unequal distribution of our temporal knowledge
and the actual pattern, our assessment of the former will be central
for our understanding of the latter. For example, the general
decrease in the total aoristic value for the Late Jomon period (Fig. 3,
t20–t40) might be a consequence of either lower actual numbers of
pithouses or lower levels of temporal knowledge (i.e. longer time-
spans). For certain types of analysis, a critical assessment of the
actual spatio-temporal process requires an even distribution of
knowledge in both dimensions and thus the detection of clusters of
low knowledge will assume a central role in developing a sampling
strategy capable of producing optimal datasets.

For a simple temporal but aspatial case, the assessment of
patterns of uncertainty can be conducted via descriptive analysis of
the distribution of aoristic weights at each timestep. In most
archaeological contexts with large temporal spans, the high
frequency of low aoristic values is likely to produce a skewed and/
or a bimodal distribution. For a diachronic study, there are also
likely to be patterns of temporal autocorrelation in the aoristic
weights, since the probabilistic approach distributes the probability
values in adjacent time blocks. The diachronic pattern of knowl-
edge and uncertainty can be easily measured by plotting summary
statistics for the aoristic weights (such as the average or the
median) as a time series. The case study (Fig. 4) shows a pattern of
fluctuation in thismeasure, roughly following the pattern shown by
the aoristic sums, with a large peak in the Nakabyo and Kasori E
phase (t8–t15) of the Middle Jomon period and during the Hori-
nouchi 1 phase (t21–t22) of the Late Jomon period, and with the
second half of the times-series showing extremely low values. This
suggests a combination of low knowledge and/or a decrease in
density for the second half of later Jomon, whereas the comparison
of Horinouchi 1 phase peak to the Nakabyo–Kasori E phase is
meaningful, with the lower number of pithouses of the former
(Fig. 3) being confirmed.

From a spatial perspective, the quality of temporal knowledge
should ideally be evenly distributed or at least random, but the
presence of positive spatial autocorrelation is in practice more
likely, due to similar retrieval contexts and strategies within local
areas. Several geostatistical methods can provide useful techniques
for understanding the spatial distribution of the average aoristic
values. For instance Fig. 5 shows a Getis’s Local Gi* (d) statistic (Ord
and Getis, 1995), a geostatistical local analysis which provides the
detection of cold spots (significant clustering of low values) and hot
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spots (significant clustering of high values). In this case, the
southeast portion of the study area appears to be a cold spot, due
probably to a high concentration of pithouses attributed to the
second half of the Late Jomon period. The exclusion of such areas
from some of the spatial analysis suggested below is therefore
necessary, especially if higher sample quality is required.

4.2. Probabilistic approaches to diachronic point pattern analysis

The integration of aoristic probability values as measures of
temporal uncertainty allows us to explore two different approaches
for identifying the actual spatial pattern of points in each period
and their change through time.

The first approach is based on the adoption of weighted spatial
analysis, where the probability values are integrated directly into
the assessment of the pattern itself. The output will be similar to
traditional point pattern approaches (e.g. a numerical value that
indicates more or less clustered, random or regular configurations),
where the uncertainty is embedded in the final output. A second
and alternative approach involves the creation of a large number of
hypothetical spatio-temporal patterns, based on the observed

distribution of the probability values. In this case, the output will be
the distribution of n analytical outputs (identical to the traditional
ones, mentioned above) corresponding to the number of simulation
runs. All other things being equal, and depending on our levels of
temporal knowledge, the results of these runs may be fairly
consistent with one another or may exhibit a lot of variation. This
simulation-based approach investigates a distribution of possible
results in probabilistic terms, with the occurrence of a specific
pattern within the n simulations being the probability that such
a pattern has indeed occurred.

Both approaches are capable of analysing the first and the second
order properties of a spatial distribution (Bailey and Gatrell, 1995;
Orton, 2005). First order properties refers to global trends in a point
pattern that are externally induced, such as the clustering of
settlements around a particular environmental resource, and are
usually assessed by examining large scale variation in the intensity
of a pattern. Second order effects refer to properties which are
inherent to the process itself, such as interaction between events
(e.g. attraction or repulsion), and are usually assessed through the
analysis of local deviation (variance) from the average intensity.
Most spatial patterns are characterized by both these properties,

Fig. 3. The sum of aoristic weights for each timestep (a) No of pithouses for each pottery phase (b).
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and identifying the relative importance of each one represents
a core aspect of modern point pattern analysis.

4.2.1. An uncertainty-weighting approach
Several spatial analysis tools include weighted versions that

introduce an intensity value for each point event. The majority are
focused on either spatial versions of well-known summary statis-
tics (mean centre of distribution, standard distance; Mitchell, 2005)
or the assessment of first order properties (kernel density estimates;
Baxter et al., 1997). There are a number of alternative tools aimed at
assessing second order properties, and capable of integrating
weighted values such as weighted K functions (Getis, 1984) and pair
correlation functions (Gavrikov and Stoyan, 1995). However, their
underlying assumptions are based on the assessment of the spatial

distribution of some variable associated with the point location,
rather than the pattern of the point process itself.

Another crucial feature to note is that these statistical methods
treat the value associated with each event as a relative variable
with no absolute meaning. This is not a problem in determining the
most probable pattern for one specific temporal block, but becomes
more of a limitation when quantitative diachronic comparison is
required. For instance, Fig. 6 shows the spatial translation of the
aoristically weighted mean centre of distribution. While still
providing a useful visual tool for assessing the change in the
absolute location of pithouses, it is difficult to assess whether the
presence of a trough in the bar chart is related to the actual stability
of the first order distribution or rather to a simple absence of
information. Clearly a comparison with the summary statistics of

Fig. 4. The aoristic median of each timestep indicating the degree of temporal knowledge for each time-step.

Fig. 5. A local Gi* (d) statistic assessing the local clustering of high/low mean aoristic values (distance bandwidth ¼ 100 m).
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aoristic mean/median can partially solve the problem by increasing
our critical awareness of the pattern suggested visually. However,
the weakness of such a method is still obvious, especially over large
spatial and temporal scales where the distribution of our knowl-
edge is likely to be uneven and thus not easily comprehensible. The
same problem is evident for any global statistics, since their values
are mathematically dependent on the distribution of the observed
data, rather than on their actual absolute values. Thus a point
pattern X1 with all the events associated with a constant aoristic
value of 0.1 will produce exactly the same results as a point pattern
X2 where the location of the events are identical to X1 but with
a constant aoristic value of 0.9. This is clearly problematic since,
diachronic comparison is thereby feasible only for recognizing the
most probable pattern, without assessing how statistically likely
this is to have occurred (i.e. how probable is the specific pattern).

From this perspective, the most useful tool is perhaps the
application of a weighted version of kernel density estimation (see
Baxter et al., 1997; Goerlich, 2003). The output in this case will
represent the density of a point process in probabilistic terms,

which in turn can be used as the input data for a wide range of tools
grouped under the label of spatial time series analysis. These
provide useful visual tools such as temporal profiling (in simple
terms, the extraction of linear time series for each sample location),
pair-wise comparisons and voxel modelling (Crema, in press) all
capable, in different ways, of handling large quantities of data
either through visual assessment or basic quantitative analysis.

4.2.2. A simulation-based approach
An alternative and more robust approach relies on the creation

of a series of n spatio-temporal distributions based on the proba-
bility values defined by the aoristic analysis. Each simulated
distribution will be assessed separately and the result expressed as
a simplified, categorical outcome (i.e. clustered, uniform or
random) for each temporal block. These categorical outcomes can
then be combined for the final output, which will return the
percentage, and consequently the probability, of each categorical
pattern. This type of simulation-based approach, which falls under
the general umbrella of Monte-Carlo methods (see Robert and

Fig. 6. The shift in the aoristically weighted mean centre of distribution indicating the global change of first order properties in the study area (above). The length of the mean
centre of distribution shift of consecutive time steps, (below).
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Casella, 2004 for an introduction), is increasingly common in
a variety of fields and has potential applications in archaeology for
case-specific statistical tests. Examples of such approaches can be
found for instance in viewshed analysis, where the observed
pattern is compared to the simulated random pattern in order to
assess the statistical significance of the distribution (Fisher et al.,
1997; Lake andWoodman, 2003). However, for the purposes of this
paper, the simulated pattern will be pseudo-random as the prob-
abilistic outcome of the aoristic analysis will be used as a constraint
in the creation of the spatio-temporal pattern.

For what follows, analytical methods based on Ripley’s K func-
tions were written in the R statistical language (www.r-project.org
with the additional code available from the corresponding
author; for previous archaeological applications of K functions, see
Orton, 2005; Bevan and Conolly, 2006) and used for the assessment
of the second order properties of the pithouse distribution in
a small sample area of generally higher aoristic values (Fig. 2). The
aim of this analysis was to determine if the apparent dispersion of
pithouses observed towards the end of the Middle Jomon period is
statistically relevant, and if it was caused by a change in the nature
of the spatial interaction.

As input data, the program requires the spatial location of the
point observations, their aoristic values at each timestep, the
distance bins for which the K function is computed, the number of
local simulation runs for the confidence envelope in the function
and the total number of spatio-temporal processes to be simulated.
On the basis of the aoristic distribution (step 1 in Fig. 7) the
program creates a series of simulated spatio-temporal processes
(step 2 Fig. 7) where the aoristic distribution is substituted for
a binary outcome of existence (w ¼ 1) or non-existence (w ¼ 0) on
the basis of the initial input probability values. Spatio-temporal
slots with higher initial aoristic value are thus more likely to be
substituted with 1, while lower values are more likely to be
substituted with 0. Clearly, with all other things being equal (e.g.
the temporal duration of the events), each event can only be defi-
nitely present or definitely absent and this will create a spatio-
temporal pattern for which the temporal knowledge is absolute. For
each simulated spatio-temporal distribution, at each timestep, all
the events with w ¼ 1 are included in the K function calculation,
with a further adjustment for edge effects proposed by Goreaud
and Pélissier (1999). Then for each distance bin, the observed K
value can be compared to the local spatial simulation envelope
(representing a random Poisson process) to indicate the type of
pattern that might be present (clustered, uniform or random
distribution). The output of these comparisons will be stored as
a nominal value for each distance bin, at each timestep. The process
is then repeated for each simulation run, and the distribution of
outcomes will in turn indicate the probability of the occurrence2 of
the specific pattern at each spatial scale and timestep (step 3 Fig. 7).

The advantage of a simulation-based approach is that it permits
the use of any of the spatial statistics proposed by the literature,
since it is not limited by the mathematical complications of inte-
grating uncertainty values as variables in the analysis itself. The
spatio-temporal patterns created by Monte-Carlo simulation are in
fact characterized by absolute knowledge in both the spatial and
temporal dimension, and are restricted only by the choice of their

resolution. The probabilistic output also solves some issues related
to the ambiguity of global statistics in a diachronic context, since
the uncertainty is embedded in the output. And finally, since the
simulation recreates spatio-temporal processes, comparison across
time becomes feasible and the use of related methods such as the
bivariate or space-time K functions are possible. Despite its
advantages, the simulation approach also has a number of limita-
tions, one of these being the number of simulations necessary to
provide a reasonable assessment of the spatio-temporal process.
The number of possible combinations of the events is extremely
large and it is impossible to compute the analysis for all of these,
even with a large cluster of computers. One solution is to compare
the pattern produced by each of a different number of simulations
in order to assess the optimal number after which the variation of
the pattern becomes insignificant.

For the purposes of this paper, a smaller test area was chosen
within which high levels of temporal knowledge predominate
(Fig. 2; compare with Fig. 5), which also covers a smaller chrono-
logical range spanning the Middle Jomon period (t1–t20). The
following analysis focuses on a distance range between 0 and
200 m with a bin size of 2 m, while 500 local spatial simulations
have been used to create the confidence envelope. The program has
been used three times with 500, 1000 and 5000 temporal simula-
tions. Comparison of the results (Fig. 8) shows that the outcome is
already stable from 500 simulations, indicating that this is suffi-
cient to provide a robust description of the spatio-temporal
process.

The results of the analysis have shown an almost complete
absence of uniform distributions, with the probability of clustering
changing at different scales at different time steps. Clustering over
a probability threshold of 0.5 starts from t8 and ends at t15 (with
probabilities over 0.5 still present at middle distances) and t16 (with
no clustering with probability higher than 0.1). Fig. 9 shows the
probability of clustering within t9 to t16 (Kasori EI to Kasori EIV) at
short distances (2–50 m) and indicates an apparent decrease of
clustering probability at short distances, especially after t15. This
corresponds to the second part of Kasori EIII phase considered by
some scholars as crucial point for understanding the transition to
the dispersed pattern typical of the pottery phases of final Middle
Jomon and Initial Late Jomon period (Kano, 2002).

5. Summary of results

The probabilistic approach discussed above facilitates the
application of several analytical tools that were previously
unsuitable or problematic, and enables us to identify novel patterns
that are otherwise undetectable with traditional methods due to
their coarse chronological resolution and their inability to handle
sources with varying levels of temporal knowledge.

The analysis of the shift in the mean centre of distribution
documented two parallel trends towards the end of the Middle
Jomon period, corresponding to time steps t13–t17. Firstly, there is
a clear shift in themean centre of distribution towards the southern
part of the study area. The distance involved in this process (ca.
500–600 m) is only slightly larger than the ‘‘shifting distance’’
described in some ethnographic studies (Wandsnider, 1992) and it
therefore remains difficult to assess at this stage whether the
pattern reflects the re-location of the same community due to local
micro-environmental changes or by a gradual abandonment of
a group and the arrival of new communities in new locations during
the Late Jomon period. Evidence for sea-level changes during the
Middle Jomon to Late Jomon transition that may well have changed
the distribution of local maritime resources (Sugihara, 1988), as
well as for external cultural influences on local pottery styles in the
same period (Kano, 2002) can be used to support either arguments

2 It is also possible to obtain two distributions of p-values (one for the clustering
test and one for the dispersion test) computed from the spatial Monte-Carlo simu-
lation. The resulting distributions of significance values can potentially be
combined (providing a single p-value for clustering and a single p-value for disper-
sion) using Fisher’s combined probability test for each distance bin at each time-
step. However this approach remains untested, and the implications of such
a nested Monte-Carlo simulation for such estimates need further evaluation. This
topic is therefore of future interest, but outside the scope of the present paper.
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to different degrees, and ultimately indicates the need for future
comparison of several case studies.

The second aspect illustrated by the analysis above is an
increase in the distance of mean centre shifts between time steps
t13 and t17. One possible cause of this pattern is the reduction of
what Dewar and McBride (1992:231–237) define as ‘spatial
congruence’, in which case the large distance in the shift of the
mean centre of distribution is in fact due to an unwillingness on the

part of inhabitants to relocate new residential units in the same
place as previous once and can thus be related to a relatively short
period of occupation in any one place.

The results of the K function analysis partly support the latter
argument, with a clear increase in the probability that the resi-
dential units within each time-block have neither patterns of
aggregation nor of segregation. From a statistical viewpoint this
implies a lack of spatial dependence in the underlying point process

Fig. 7. An example of an analysis using Monte-Carlo simulation of a spatio-temporal pattern. The observed spatio-temporal data is firstly converted to aoristic data (step 1), then
a series of simulated spatio-temporal patterns are created (step 2). Finally each of these patterns is assessed and the results are stored in order to provide a probabilistic output to
the analysis (step 3).

Fig. 8. Comparison of 500, 1000 and 5000 simulation runs for the Monte-Carlo simulation-based Ripley’s K Function. The lines represent the probability of clustering at increasing
distances for the t15.
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(i.e. the one generating the observed distribution of settlements)
and means that the construction of each residential unit is not in
turn influenced by the presence of other residential units from the
same time-block. If we consider the use-life of these pithouses as
suggested by the literature (e.g. Watanabe, 1986) and the length of
our time-blocks, there are chances that the pattern reflects multiple
short occupations occurring at different times within the time-
block itself. Divergence in the season of occupation of two pith-
ouses, deduced from the analysis of shell deposits supports this
hypothesis (Toizumi, 2007), but further investigation, which inte-
grates additional variables (such as the facility depletion interval:
Wandsnider, 1992), should be undertaken, since the visible remains
of abandoned residential units are still likely to have had some
influence on the location of new pithouses. Alternatively, the
occurrence of radically opposing patterns for two different
moments of timewithin a time-block might also produce a random
pattern in the archaeologically observed data. Such scenario is less
likely to have occurred, since a high degree of spatio-temporal non-
stationarity will indicate different interaction properties (e.g.
attraction and repulsion) among the residential units through and
within multiple time-steps. This will in fact happen only if the
cycles of change between clustered and dispersed patterns have
a higher frequency compared to the achievable temporal
resolution.

The possible increase in the residential mobility, suggested
above, is not a unique episode within the Jomon period. Such
changes have in fact been suggested for the end of the Early Jomon
Period (Habu, 2001), the transition to the Late Jomon period, and
during the second half of the Late Jomon period (Nishino, 2005),
indicating the existence of potential cyclical events in the spatio-
temporal organization of these complex hunter–gatherer
communities.

6. Discussion

The importance of integrating the temporal component into
archaeological spatial analysis is not merely limited to its role in
diachronic comparison, but also in our basic assessment of spatial
patterning in the first place. The formal quantification of temporal
uncertainty is therefore a fundamental issue, which requires
further investigation in order to exploit all available archaeological

knowledge. On the other hand, it is important to remember that
there are intrinsic limits to what kinds of research questions can be
asked in cases where our chronological knowledge is less than
perfect. Extremely fine-grained subdivision of the temporal
dimension will produce a ‘flat’ diachronic pattern in most cases,
with probability values spread fairly evenly across the time steps,
and the impression of a rather static spatio-temporal pattern. The
main aim and the most useful outcome of the probabilistic
approach is not to create new information, but rather to make best
use of the available information by integrating different degrees of
knowledge. In general, such approaches will require a more
sophisticated and advanced set of techniques that are capable of
managing and integrating different types of knowledge, such as
probabilistic information (e.g. aoristic analysis or radiocarbon
dates), temporal topology (e.g. stratigraphic relationships) or even
intuitive knowledge, ultimately structured in a complex episte-
mological environment characterized by a network of ranked and
ordered relationships between different temporal ontologies. The
increasing use of Bayesian statistics (e.g. Buck et al., 1996), Demp-
ster–Shafer theory (e.g. Ejstrud, 2005) and fuzzy logic (e.g. Hatzi-
nikolaou, 2006) all aim to manage large amounts of spatial and
temporal multivariate data characterized by different degrees of
uncertainty, and appear to be promising research directions.

Ultimately the goal of an aoristic and probabilistic approach is to
reduce, as part of the interpretative process, the possible alternative
patterns that might occur within a specific temporal block. The
output will thus not be to propose a single solution (a single
pattern) but rather an environment where comparisons between
alternative hypotheses are made easier. A simulation-based
approach offers great opportunities for retrieving such information
while retaining a clear idea of available temporal knowledge; it also
offers a chance to create case-specific analytical tools, which can
integrate time as a proper dimension, rather than as an attribute of
singular events. Finally, both the mathematical formality of the
probabilistic approach and the integration of a temporal dimension
will require a more sophisticated and formal definition of the unit
of analysis. This is especially the case for the aggregated, subjec-
tively defined and ontologically unstable types of event such as
‘site’ or ‘settlement’ onwhichmost archaeological spatial analysis is
focused. The adoption of probability weights for units with more
ontologically consistent boundaries addresses this issue by simply

Fig. 9. Comparison of clustering probability at short distances (2–50 m) from t9 to t16 (Kasori EI to Kasori EIV phase). Initially, clustering occurs at short distances between 2 and 4 m
(t9–t13), then the pattern at low distances becomes increasing random until t16 when no clustering occurs at the first 50 m.
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avoiding the problems associated with the definition of aggregate
units (for an example where the probability weights have been
assigned to each retrieved artefact, see Bevan et al., 2008:33; and
for the datasets: www.ucl.ac.uk/asp/). The formal and quantitative
integration of complex elements such as duration or the ontological
transformations of the events (e.g. different functions for a site over
time and their resulting unsuitability as units of analysis for specific
questions) are the most difficult issues to be faced, since they alter
the dimensionality of the events themselves. These units of analysis
cannot be described as one-dimensional points in a multidimen-
sional space, but rather as multidimensional entities in a multidi-
mensional framework. Any spatial analysis which seeks to provide
a proper insight into changing patterns through time will thus
require the construction of both new theoretical perspectives and
new methodological tools.
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