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A B S T R A C T   

We introduce a new workflow for analysing archaeological frequency data associated with relative rather than 
absolute chronological time-stamps. Our approach takes into account multiple sources of uncertainty by 
combining Bayesian chronological models and Monte-Carlo simulation to sample possible calendar dates for each 
archaeological entity. We argue that when applied to settlement data, this combination of methods can bring new 
life to demographic proxies that are currently under-used due to their lack of chronological accuracy and pre-
cision, and provide grounds for further exploring the limits and the potential of the so-called “dates as data” 
approach based on the temporal frequency of radiocarbon dates. Here we employ this new workflow by re- 
examining a legacy dataset that has been used to describe a major population rise-and-fall that occurred in 
central Japan during the J�omon period (16,000–2,800 cal BP), focusing on the temporal window between 8,000 
and 3,000 cal BP. To achieve this goal we: 1) construct the first Bayesian model of forty-two J�omon ceramic 
typology based cultural phases using a sample of 2,120 radiocarbon dates; 2) apply the proposed workflow on a 
dataset of 9,612 J�omon pit-dwellings; and 3) compare the output to a Summed Probability Distribution (SPD) of 
1,550 radiocarbon dates from the same region. Our results provide new estimates on the timing of major de-
mographic fluctuations during the J�omon period and reveal a generally good correlation between the two 
proxies, although with some notable discrepancies potentially related to changes in settlement pattern.   

1. Introduction 

The last decade witnessed an increasing number of synthetic 
research studies (Kintigh et al., 2014) where legacy archaeological data, 
originally collected for different purposes, have been brought together 
for new purposes. Given the finite nature of the archaeological record 
(Surovell et al., 2017), it is our collective responsibility to identify op-
portunities for data reuse, as well as tackle the new types of methodo-
logical and theoretical hurdles prompted by this task (Bevan, 2015; 
Huggett, 2020). Perhaps one of the best examples of such new chal-
lenges is the reuse of large collections of radiocarbon dates as a proxy of 
prehistoric demographic changes. This approach, often referred to as 
dates as data (Rick, 1987), has grown rapidly in its number of applica-
tions during the last decade (e.g. Shennan et al., 2013; Crema et al., 
2016; Zahid et al., 2016; Bevan et al., 2017; Riris, 2018 etc.), thanks to 
the increased availability and accessibility of radiocarbon databases (e. 

g. Chaput and Gajewski, 2016; Manning et al., 2016; Lucarini et al., 
2020) and the parallel development of a suite of new statistical tech-
niques designed to handle such data (Brown, 2017; Crema et al., 2016; 
Crema et al., 2017; Bronk Ramsey, 2017; Timpson et al., 2014; 
McLaughlin, 2018, etc.). 

The dates as data approach is, however, not immune to criticisms. Its 
core assumption (more people → more dateable samples → more 
radiocarbon dates) has been critically discussed since its inception (see 
Fig. 1 in Rick, 1987), and several issues have been put forward in the last 
decade, from the false signals linked to sampling error and the calibra-
tion process to deeper concerns on the very nature of the proxy itself (e. 
g. Attenbrow and Hiscock, 2015, Contreras and Meadows, 2014; 
Freeman et al., 2018; Torfing, 2015; Williams, 2012; Weninger et al., 
2015). While methodological advances have solved many of these 
challenges, some remain sceptical of the usefulness of the whole enter-
prise. There is, however, a consensus amongst practitioners (and critics), 
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that prehistoric population reconstructions should be based on multiple 
proxies rather than be exclusively reliant on the density of radiocarbon 
dates. Nonetheless, examples are limited (but see Cromb�e and Robinson, 
2014; Downey et al., 2014; Palmisano et al., 2017; Tallavaara and 
Pesonen, 2018; Feeser et al., 2019), as most alternative proxies in pre-
historic contexts do not offer comparable chronological precision and 
accuracy to radiocarbon dates. As a consequence, more traditional and 
perhaps more direct lines of evidence such as site and dwelling counts 
have been underused due to their temporal definition being based on 
attributions to cultural phases rather than absolute dates (but see Oh 
et al., 2017). 

1.1. Uncertainties in archaeological periodisations 

In order to be able to use proxies that are exclusively defined by 
chrono-typological phases, we need to be able to assign to each calendar 
date t a probability of occurrence P(t) of an archaeological event. The 
objective is thus fundamentally equivalent to the calibration of radio-
carbon dates; both measure some physical properties (amount of 14C 
isotope vs diagnostic traits on artefacts) linked to the flow of time 
through some process (radiocarbon decay vs cultural transmission) and 
make use of a statistical model that combines different sources of un-
certainty to yield a probabilistic estimate of when a particularly event 
has occurred (e.g. making a ceramic vessel). In the case of radiocarbon 
calibration, these are measurement errors in the sample and the un-
certainties associated with the calibration curve. In the case of archae-
ological periodisation, we need to take into account three interrelated 

forms of uncertainty. 
The first one, which we will refer here to as within-phase uncertainty, 

is how we define the shape of the probability density function within the 
archaeological period assigned to a particular event. In other words, 
how we describe the change of P(t) when t is within a particular phase? 
For example, if an event is assigned to a phase dated between 700 and 
300 BCE, what is the probability that the event occurred in the year 354 
BCE? While ultimately the selection of the most appropriate probability 
density function is context-dependent, there have been some discussions 
on what shape we should assume a priori. Proponents of aoristic analysis 
(e.g. Johnson, 2004; Crema, 2012; Orton et al., 2017) suggest a uniform 
distribution, and hence would assign a constant probability within the 
archaeological phase (thus for the example above, P(t ¼ 354 BCE) would 
be equal to 0.0025, or 1/400). Crema (2012) justifies this shape 
invoking the principle of insufficient reason: in the lack of any additional 
knowledge, we should assume that all years have equal probabilities. 
This assumption may be valid in crime science (where the aoristic 
analysis was originally developed, see Ratcliffe and McCullagh, 1998), 
and perhaps in some historical contexts where an ensemble of 
chrono-typological, dendrochronological, numismatic, and historical 
dates are available. However, for prehistoric chrono-typological phases, 
there is a reasonably large number of theoretical and empirical studies 
(e.g. Rogers, 1962; Christenson, 1994; Neiman, 1995; Lyman and Har-
pole, 2002, Manning et al., 2014, Kandler and Crema, 2019, etc.) that 
suggest a unimodal curve of a rise and fall in popularity (referred to as 
popularity principle; see O’Brien and Lyman, 2000) to be more appro-
priate. The literature on chronological apportioning, which deals with 
similar problems, has indeed adopted such assumption by using prob-
ability distributions such as the Chi-square (Carlson, 1983), the Gamma 
(Steponaitis and Kintigh, 1993), the Beta (Baxter and Cool, 2016), and 
the normal distributions (both in its truncated or non-truncated forms; 
Carlson, 1983; Bellanger and Husi, 2012; Roberts et al., 2012; Baxter 
and Cool, 2016). These alternatives reflect both the general agreement 
on the unimodal shape and the more context-specific debate on whether 
the rise and fall in popularity should be assumed to be symmetric or not, 
or whether there should be flexibility in capturing variation in the 
kurtosis. 

The second form of uncertainty is determined by how we define the 
membership of a particular archaeological event to a given archaeo-
logical phase or period. This type of uncertainty (see Bevan et al., 2012; 
Crema, 2015 for review), which will refer here to as phase assignment 
uncertainty, is conditioned by the nature of the diagnostic elements used 
by archaeologists to associate a particular artefact to an archaeological 
phase. An event can thus be assigned to one or more phases or sub-
phases, with potentially high levels of non-random inter-observer errors 
(see Bevan et al., 2012 for an example involving potsherd recovered in 
survey contexts). Phase assignment uncertainty is effectively linked with 
within-phase uncertainty, as one could argue that P(t) could be described 
by a mixture model with k probability density functions, each with a 
mixture weight which are probabilities that sum to unity. The parameter 
k will thus represent the range of possible chrono-typological phases, 
and the weights would represent our degree of belief of a focal event 
being assigned to each. Estimates of the mixture weights could poten-
tially be derived from properties of the diagnostic elements (see for 
example Bevan et al., 2012), but in the majority of cases these are un-
likely to be reported (i.e. most archaeologists will report “phase A ~ 
phase B00, rather than “70% phase A and 30% phase B”). It is an open 
question on whether in the absence of precise mixture weights one 
should assume them to be uniformly distributed, proportional to the 
duration of each phase (e.g. if phase B has three times the duration of 
phase A, wA should be equal to 0.25 and wB equal to 0.75), or based on 
observed frequencies of artefacts assigned to each phase (cf Ortman, 
2014). 

The third form of uncertainty is determined by how the phases 
themselves are dated. Can we be confident that the phase to which we 
assigned our event is precisely dated between 700 and 300 BCE, rather 

Fig. 1. Marginal posterior distribution of the trapezoidal model parameters for 
the 42 J�omon ceramic phases. 
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than 711 and 298 BCE? In essence, such phase boundary uncertainty is 
associated with our uncertainty in defining the parameters of the 
probability density function describing each phase. Nearly three decades 
of Bayesian chronological models of radiocarbon dates (Buck et al., 
1992; Ziedler et al., 1998; Bronk Ramsey, 2009a) have dealt with this 
problem, enabling archaeologists to infer parameters for a variety of 
distributions (including flexible options such as the trapezoidal distri-
bution, Lee and Bronk Ramsey, 2012), as well as to incorporate various 
assumptions in the form of priors and constraints. 

Thus, there is a substantial body of archaeological work that tackles 
these three forms of uncertainties, but little to no attempt has been made 
to take them into account at the same time. We argue that such partial 
treatment can lead to substantial biases when examining frequency data. 
For example, handling within-phase uncertainty but ignoring phase 
boundary uncertainty might potentially lead to the false impression that 
significant changes in temporal frequencies occur at precise intervals 
corresponding to boundaries between archaeological phases.1 

The solution proposed in this paper expands the Monte-Carlo 
approach developed initially in Crema (2012) by utilising Bayesian 
posterior samples of phase parameters. This effectively involves simu-
lating n possible dates of archaeological events by iteratively: 1) sam-
pling a random start and end date of the assigned phase(s) (phase 
boundary uncertainty); 2) randomly assign the even to a unique phase 
(phase assignment uncertainty); and 3) randomly sample a possible date 
within such phase (within-phase uncertainty). In order to enable full 
reproducibility (Marwick, 2017), details of this procedure, as well as the 
R and OxCal scripts utilised for the case study, are available on the 
following GitHub repository: https://github.com/ercrema/jomonPh 
asesAndPopulation as well as on zenodo: https://doi.org/10. 
5281/zenodo.3719507. 

1.2. Case study: J�omon chronology and demography 

The J�omon culture (16,000–2,800 cal BP; Habu, 2004) offers one of 
the best researched prehistoric hunter-gatherer traditions known to 
archaeology, thanks to the exceptionally high volume of rescue 
archaeology in Japan (Habu and Okamura, 2017) combined with the 
rare opportunity to rely on a ceramic-based chrono-typological 
sequence. The latter in particular has been central to Japanese archae-
ology, and nearly a century of painstaking research has led to the cre-
ation of detailed regional and sub-regional sequences. As a result, 
archaeologists utilise more often such relative sequences, rather than 
absolute calendar dates, when referring to key episodes and events 
within the J�omon period. 

Given its time span of over 10,000 years, it is perhaps unsurprising 
that the J�omon period was characterised by multiple episodes of pop-
ulation booms and busts, typically inferred from fluctuations in the 
number of residential units (pit-dwellings) and archaeological sites. 
Early works (Koyama, 1978) have initially identified major regional 
trends (a slow rise in the Southwest, a rise and fall in the centre, and rise 
followed by a plateau in the North) at a millennial-scale. However, 
subsequent studies based on chrono-typological sequences (e.g. Ima-
mura, 1997; Shitara, 2004; Sekine, 2014, etc.) have revealed a much 
more complex picture, with multiple fluctuations and further regional 
and sub-regional variation in the demographic trajectories. These 
studies provide a much-refined perspective on J�omon demography, 
potentially capturing key processes such as population dispersal and 
differences in local adaptive strategies to environmental change. 

However, the over-reliance on ceramic-based chronology severely limits 
the possibility to explore these hypotheses by, for example, comparing 
these dynamics to climatic data, or to infer key measures such as pop-
ulation growth rate accurately. The dates as data provide one way to 
overcome these issues (see Crema et al., 2016 for an application on 
J�omon data) but should ideally be coupled with alternative proxies to 
evaluate its robustness as a measure of past demographic change. 

Assigning absolute calendar dates to the J�omon chrono-typological 
sequence is thus an important step for further exploring its population 
dynamics, and at the same bring in additional lines of evidence to test 
specific hypothesis linked to social, economic, and cultural factors. This 
objective becomes even more appealing if we consider that the total 
number of chrono-typological phases and subphases across the entire 
length of the J�omon period is easily above 100 (cf. Kobayashi, 2008). 
This fine-grained scheme had led some scholars to suggest that the 
duration of several phases might be less than 100 years (e.g. Kobayashi, 
2008), an unmatched resolution for prehistoric hunter-gatherers. 
However, attempts to construct an absolute chronological framework 
for these ceramic phases have been comparatively limited. Most studies 
have focused on the visual display of calibrated radiocarbon dates 
associated with key ceramic phases, which has already revealed putative 
relationships between major cultural and climatic events throughout the 
J�omon period (e.g. Kudo, 2007). 

More recently, Kobayashi (2008, 2017) has collated and analysed a 
sample of over 3,200 radiocarbon dates to develop an absolute chro-
nology of the start and end dates of major J�omon ceramic phases. 
Kobayashi’s chrono-typological sequence has subsequently been used to 
construct time-series of residential units counts for different regions 
(Kobayashi, 2008, Crema, 2012; Crema, 2013), confirming the existence 
and assessing the timing of at least three cycles of population rise and 
fall between the Early and the Late J�omon periods (ca 7000- 3200 cal 
BP) in central Japan. 

However, Kobayashi’s sequence assumes perfectly abutting phases 
(i.e. the start of a ceramic phase coincides to the end of the previous 
phase), no uncertainty in the dates, and an agnostic view on the within- 
phase uncertainty. As a consequence, some analyses showed a false 
impression of high accuracy and precision when abrupt changes in the 
number of residential units were recorded between chronologically 
adjacent phases. To overcome this issue, here we model J�omon ceramic 
phases allowing for overlaps and model the within-phase uncertainty 
using the trapezoidal distribution. The latter allows to take into the 
assumption of a rise and fall pattern in the popularity of cultural traits 
while allowing for the flexibility to take different shapes (see Lee and 
Bronk-Ramsey, 2012). We employ Bayesian inference to fully take into 
account the uncertainty in the estimates of model parameters and use a 
nested form of Monte-Carlo simulation to sample absolute calendar 
dates of archaeological events while taking into account all three forms 
of uncertainty described above. 

Our case study re-examines a dataset of J�omon pit-dwellings from 
southwest Kanto (Saitama, Tokyo, and Kanagawa prefectures) and 
Chubu Highlands (Nagano and Yamanashi prefectures) in central Japan 
as a case study. The dataset has been originally studied by Imamura 
(1997) and re-examined by Crema (2012). We then compare the 
time-series of residential frequencies we obtained from the two regions 
to the summed probability distribution (SPD) of radiocarbon dates from 
the same area, examining, in particular, the timing of the Middle J�omon 
rise-and-fall, the largest demographic fluctuation recorded in this area 
during the J�omon period. Given the smaller number sample size for 
earlier periods we focus on the interval between 8,000 and 3,000 cal BP, 
corresponding approximately to the latter half of the Initial J�omon to the 
end of the Final J�omon period. 

2. Materials 

We collated radiocarbon dates with known association to J�omon 
ceramic phases by augmenting an existing database created by one of us 

1 It is also worth noting here that while the formal definitions of these 
different forms of chronological uncertainties are pivotal in designing the so-
lution detailed below, we are not implying here an essentialist approach to-
wards typological phases, but rather acknowledge them as useful abstractions 
that capture observed continuous variations of diagnostic elements and their 
relation to the flow of time. 
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(see Kobayashi, 2017). The initial dataset has been cleaned by removing 
duplicates, samples with incomplete information, as well as dates from 
specimens with suspected marine reservoir effect. The resulting, final 
dataset consisted of 2,120 radiocarbon dates from 447 archaeological 
sites across Japan (see electronic Supplementary Table 1). We used a 
revised form of Kobayashi’s ceramic phases (Table 1; see also Kobayashi, 
2017) by aggregating shorter and small-sampled sub-phases together. 
The resulting sequence comprised 42 ceramic phases covering the entire 
chronological span of the six major J�omon periods (Initial, Incipient, 
Early, Middle, Late, and Final J�omon). Samples of soot and organic 
residues taken from the same vessel were combined using OxCal’s 
R_Combine function under the assumption that the dates were associated 
with the same calendar year. 

The residential data used by Imamura (1997) and Crema (2012) 
study was collated by digitising summary tables from Suzuki (2006). 
This consisted of dwelling counts organised by ceramic phases with 
different degrees of uncertainty ranging from associations to a single 
phase to as many as 14 phases (see Crema, 2012 for an extensive dis-
cussion). The 9,612 J�omon pit-dwellings in the dataset were collated 
from Yamanashi (n ¼ 501), Tokyo (n ¼ 2,221), Saitama (n ¼ 1,748), 
Kanagawa (n ¼ 2,724), and Nagano (n ¼ 2,418) prefectures in central 
Japan. The sample includes few pit-dwellings dated to the Incipient, 
Initial, and Final J�omon periods which are outside the temporal window 
of analyses in the majority of the Monte-Carlo samples of ceramic phase 
start and end dates. Nonetheless, we decided to keep the entire dataset, 
as this has no impact in the approach we employed other than the fre-
quency time-series being composed of slightly different sample sizes for 
each Monte-Carlo iteration. 

For the SPD analysis, we collated a total of 2,544 radiocarbon dates 
from 370 sites located in the same regions have been retrieved from the 
National Museum of Japanese History’s radiocarbon database (Kudo, 
2017, URL: https://www.rekihaku.ac.jp/up-cgi/login.pl?p¼para 
m/esrd/db_param, electronic Supplementary Table 2). The initial data 
obtained from the online query included all dates associated with 
terrestrial and marine samples attributed to the J�omon period from the 
five prefectures. We excluded, from this initial set, duplicates, dates 
from bones with unknown impact of reservoir effect (n ¼ 13), as well as 
samples with a14C age outside the bracket 7,500–2,500 14C Age (ca. 
8000–3000 cal BP). The final dataset consisted of 1,550 radiocarbon 
dates from 283 sites, with 77 dates also included in the samples used for 
the Bayesian chronological modelling. 

3. Methods 

3.1. Bayesian chronological modelling 

We fitted trapezoidal models (Lee and Bronk Ramsey, 2012) to the 
42 J�omon ceramic phases using OxCal v.4.3 (Bronk Ramsey, 2009a) and 
bespoke R scripts to handle input/output via the oxcAAR v1.0 R package 
(Hinz et al., 2018). The choice of the trapezoidal model over other 
distributions was dictated by its flexibility in capturing a variety of 
possible shapes to portray within-phase uncertainty, including uniform 
distribution and single-peaked symmetric distributions comparable to 
the Gaussian. In order to evaluate the sensitivity of our outcome to the 
choice of this model we also fitted Gaussian and Uniform models which 
produced results that were qualitatively comparable to the ones pre-
sented in the paper (see electronic Supplementary Figs. 1–4). 

Radiocarbon dates associated with the same event (e.g. the same 
ceramic vessel) were combined using the R_Combine function in OxCal 
after removing potential outliers (Bronk Ramsey, 2009b) using a normal 
distribution model with a mean of zero and a standard deviation of 2. 
This was achieved by removing the date with the highest outlier prob-
ability and by repeating the process iteratively until the overall agree-
ment index was above 60 and the Chi-squared test was non-significant at 
M ¼ 0.05. 

The initial fitting of the trapezoidal model for the 42 ceramic phases 

Table 1 
Correspondence between different nomenclature of ceramic phases and associ-
ated sample size of radiocarbon dates (n ¼ number of radiocarbon dates, n(eff.) 
¼ number of radiocarbon dates associated to different specimens; and Sites ¼
number of archaeological sites from which samples were recovered). * Kasori E 
ceramic phases have two distinct classifications using Arabic and Roman nu-
merals (see detailed review in Toda, 1999).  

Ceramic 
Phases 

n n 
(eff.) 

Sites Kobayashi 
(2017) 

Ceramic Phase in Suzuki’s 
Pithouse Data 

S0 16 16 4 S0 Mumon doki 
S1.1 64 62 16 S1-1 Ry�ukisenmon-kei 
S1.2 77 77 24 S1-2 Biry�ukisenmon-kei; 

Tsumegatamon-kei 
S2.1 94 90 20 S2-1 Tsumegatamon-kei; 

�Onatsumon-kei 
S2.2 38 38 8 S2-2 Taj�omon-kei 
S3 107 107 47 S3-1 Igusa I; Igusa II; Daimaru; 

Natsushima; Inaridai; 
Tateno; Inarihara; 
�Ourayama; Hanawadai 1; 
Hanawadai 2; Hirasaka; 

S3-2 
S3-3 
S3-4 

S4 45 45 24 S4 Mito; Lower Tado; Upper 
Tado; Hosokubo 

S5 22 22 10 S5 Shiboguchi; Nojima 
S6 14 14 6 S6 Ugajimadai 
S7 48 47 14 S7 Lower Kayama; Upper 

Kayama 
S8 85 80 21 S8 Uenoyama; Irumi I; Irumi II; 

Ishiyama; Okk�oshi; 
Tenjinyama; Kaminokidai; 
Shioya; Shimoyoshii 

Z1 56 50 16 Z1 Lower Hanazumi 
Z2 31 29 15 Z2 Sekiyama; Futatsuki; 

Kaminoki 
Z3 55 53 8 Z3 Kurohama; Ario 
Z4 16 14 10 Z4 Moroiso a; Minami�ohara 
Z5 59 55 15 Z5 Moroiso b; Uehara 
Z6 33 30 15 Z6 Moroiso c; Hinata I; 

Kagobatake I; Shitajima 
Z7 29 29 16 Z7 J�usanbodai; Hinata II; 

Kagohata II 
C1 10 10 6 C1 Gory�ogadai 1 
C2~4 19 19 14 C2~C4 Gory�ogadai 2 
C5~6 22 22 13 C5 Atamadai 1a; Atamadai 1 b; 

Mujinasawa; Katsuzaka I; 
Aramichi 

C6 

C7~8 33 32 16 C7 Atamadai 2; Atamadai 3; 
Katsuzaka 2; T�onai I; T�onai 
II; 

C8 

C9 61 61 28 C9a Idojiri I;Idojiri III; Katsuzaka 
3; Atamadai 4 C9bc 

C10 58 58 23 C10a Daigi 8a; Kasori E1 (EI)* Sori 
I C10b 

C10c 
C11 41 41 21 C11ab Daigi 8 b; Kasori E2 (EI)*; 

Sori II; Sori III C11c 
C12 106 105 30 C12a Daigi 9; Kasori E3 (EII-EIII)*; 

Sori IV;SoriV C12b 
C12c 

C13 64 63 23 C13 Kasori E4 (EIV)*; Daigi 10; 
C14 11 11 7 – Kasori EV; Daigi 10; 
K1 37 37 23 K1-1 Sh�omy�oji 1;Sh�omy�oji 2 

K1-2 
K1-3 

K2 103 65 17 K2 Horinouchi 1 
K3 54 49 16 K3 Horinouchi 2 
K4 28 25 11 K4 Kasori B1 
K5 58 48 9 K5 Kasori B2 
K6 26 24 6 K6 Kasori B3 
K7 47 43 16 K7 Takaihigashi; S�oya 
K8 39 38 11 K8 Angy�o 1; Angy�o 2 
B1 89 83 29 B1 �Obora B; Angy�o 3a 
B2 73 58 25 B2 �Obora BC; Angy�o 3 b 
B3 44 41 20 B3 �Obora C1; Angy�o 3c; Maeura 

1 
B4 54 51 17 B4 �Obora C2; Angy�o 3 d; 

Maeura 2 

(continued on next page) 
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returned an overall agreement index of 48. We thus removed a total of 
46 dates with agreement indices below 60 and refitted our model 
achieving an overall agreement index of 110.86. We then used the 
MCMC_Sample function in OxCal and extracted 5,000 posterior samples 
of the four trapezoidal distribution parameters for each of the 42 
ceramic phases. 

3.2. Monte-Carlo simulation 

We simulated calendar dates for each pit-dwelling in three steps:  

1. Sample the four parameters of the trapezoidal model from the joint 
posterior distribution of each of the 42 ceramic phases.  

2. Randomly assign a unique phase to all pit-dwellings associated with 
multiple candidate phases. The probability of a candidate phase 
being selected was proportional to its standard deviation, calculated 
using the equation provided by Dorp and Kotz (2003) for trapezoid 
distributions. For example, if a residential unit was assigned to 
phases I, II, and III, with standard deviations 20, 30, and 50, the 
probability of the assigned phase being I is equal to 0.2 (i.e. 20/(20 
þ 30þ50)).  

3. Randomly draw a calendar date from the trapezoidal distributions 
defined in step 1 and associated with a given residential unit in step 
2. 

This routine — which effectively takes into account within-phase, 
phase assignment, and phase boundary uncertainties — was repeated 
5,000 times. For each repetition set we also: a) computed a univariate 
kernel density estimate of the simulated dates; and b) grouped and 
counted residential units falling within 100-years sized temporal blocks 
between 8,000 and 3,000 cal BP (i.e. 8,000–7,901 cal BP; 7,900–7,801 
cal BP; etc.). 

3.3. Summed probability distribution of radiocarbon dates 

A Summed Probability Distribution of Radiocarbon Dates (SPD) was 
created using the rcarbon v.1.3 package (Bevan and Crema, 2019). We 
calibrated the 14C dates using the IntCal13 calibration curve (Reimer 
et al., 2013) and without normalisation to avoid artificial peaks (cf. 
Weninger et al., 2015). Marine dates were calibrated with the Marine13 
calibration curve (Reimer et al., 2013), using a ΔR of 88 and an asso-
ciated error of 33 years (Shishikura et al., 2007). To account for 
inter-site variation in sampling intensity, we summed to unity dates 
from the same site with a median calibrated age inter-distance of 200 
years (cf. Timpson et al., 2014, see electronic Supplementary Fig. 5 for 
sensitivity analysis with different inter-distance settings). The resulting 
768 “bins” have been combined to produce the final SPD curve. To 
facilitate the comparison between different proxies we aggregated the 
summed probabilities using the same 100-years temporal blocks be-
tween 8,000 and 3,000 cal BP used for the pit-dwelling data. We also 
sampled random calendar dates from each of the 768 bins and generated 
time-series of bin counts aggregated using the same 100-years temporal 
blocks. This process was repeated 5,000 times in order to produce the 
same number of frequency time-series as the residential units. 

3.4. Correlation analysis and model testing 

We assessed the correlation between the two demographic proxies by 
computing 5,000 Pearson’s correlation coefficients between randomly 

paired100-years block time-series of radiocarbon bins and pit-dwelling 
counts. To explore possible temporal variations in the extent of corre-
lation between the two proxies we also calculated their rolling correla-
tion using a moving window of 10 time-blocks, equivalent to a 1,000 
years. 

In order to further explore differences between the two demographic 
proxies, while taking into account the idiosyncrasies of the calibration 
process and the effects of sampling error, we also employed a modified 
version of the Monte Carlo testing approach used in Shennan et al. 
(2013, see also Timpson et al., 2014). The original approach consists of 
1) fitting a theoretical growth model to the observed data; 2) simulating 
the same number of dates as the observed data in calendar time using the 
fitted model; 3) back-calibrating each date in 14C age and calibrating it 
back in calendar time; 4) generating a realisation of the theoretical SPD 
by summing the dates; and 5) repeating steps 1 to 4 multiple times to 
generate a simulation envelope to which the observed SPD can be 
compared to. We made two notable changes to this procedure. First, we 
generated our simulation envelope (representing our theoretical 
expectation) from the mean value in the composite kernel density esti-
mate of the residential data rather than a fitted exponential curve. Thus, 
our null hypothesis was that changes in the density of radiocarbon dates 
are comparable to changes in the density of residential units. Second, we 
compared observed and simulated annual growth rates rather than the 
raw SPDs to avoid the impact of early divergences in defining later 
differences between the two proxies. 

4. Results 

Fig. 1 shows the posterior distribution of the trapezoidal model pa-
rameters of the forty-two J�omon ceramic phases we examined. Although 
the Bayesian model did not include any constraints on the temporal 
relationship between phases, our results confirmed the general sequence 
expected from the literature, particularly when the “core stage” of each 
phase (i.e. the interval between the parameters b and c) was considered. 
In very few cases the early tail of the distribution (i.e. parameter a) 
exhibited reverse chronological order (e.g. S2.1a is estimated to be more 
recent than S2.2a; S6a is more recent than S7a), but these exceptions 
were limited to chrono-typological phases of the Initial J�omon period 
where the number of diagnostic elements in the ceramics are limited. 

The increase in the number of more complex decorative elements 
does undoubtedly play a significant role in explaining the more detailed 
periodisation and consequently the shorter duration of ceramic phases 
in some temporal windows, most notably within the Middle J�omon 
period. These shorter phases (some possibly with sub-century durations) 
often have a higher degree of overlap in their interval. In the case of the 
Middle J�omon period, this pattern can at least in part be explained by 
the presence of plateaus in the calibration curve (particularly around 
5,300 to 5,000 cal BP). More in general, and aside from the genuine 
existence of overlaps between phases, it is worth considering that the 
model does not take into account the spatial dimension, and conse-
quently the diffusion of particular ceramic styles and the resulting 
temporal discrepancy across sites located in different regions. These are, 
however, acceptable limitations as the pit-dwelling data we examined 
are from central Japan which has the most substantial contribution to 
the data we used to define our chronological model. Nonetheless, tar-
geted studies on smaller regions and/or explicit incorporation of the 
spatial dimension are desirable if more accurate regional comparisons 
are being sought. 

Fig. 2 shows the composite plots of the kernel density estimates 
(CKDE; Brown, 2017) obtained from each of the 5,000 simulates sets of 
pit-dwelling dates from Southwest Kanto (Kanagawa, Saitama, and 
Tokyo prefectures; Fig. 2-a) and Chubu highlands (Yamanashi and 
Nagano prefectures; Fig. 2-b). Both sets of curves capture the main de-
mographic fluctuations depicted in Imamura’s original study (cf. fig. 2 in 
Imamura, 1997), including the Early J�omon rise and fall (ca. 6,500–5, 
800 cal BP) and the minor oscillations between the end of Middle J�omon 

Table 1 (continued ) 

Ceramic 
Phases 

n n 
(eff.) 

Sites Kobayashi 
(2017) 

Ceramic Phase in Suzuki’s 
Pithouse Data 

B5 58 54 27 B5 �Obora A; Chiami; K�ori I 
B6 96 52 21 B6 �Obora A’; Arami; K�ori II  
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and the first half of the Late J�omon period (ca. 4,600–4,000 cal BP) 
observed in Southwest Kanto, and most notably the Middle J�omon boom 
and bust (ca. 5,500–4,600 cal BP) observed in both regions. 

The combined time-series of the two regions (Fig. 3-a) shows broad 
similarities in shape with the SPD generated from the radiocarbon dates 
of the five prefectures (Fig. 3-b). The latter also exhibits boom and bust 
events over the same interval, although with some discrepancies in their 
timing (see below), the lack of a rise-and-fall pattern in the mid 5th 
millennium cal BP, and a comparatively higher density of dates from 
4,700 cal BP onwards. Despite these differences, the overall sample 
correlation between the two time-series across the 5,000 Monte-Carlo 
iterations was high (median: r ¼ 0.65; 95% percentile interval: 
0.51–0.75) and the 1,000 years rolling correlation (Fig. 3-b) suggest a 
generally high agreement between the time-series of radiocarbon dates 
and pit-dwellings. 

The discrepancies in the timing of the Middle J�omon rise and fall 
between the 6th and the 5th millennium cal BP are further highlighted in 
Fig. 4, where the observed annual growth rate computed from the 
radiocarbon dates is compared against a theoretical envelope of growth 
rates simulated from the observed residential data. The analysis con-
firms intervals when the SPD-based growth rates diverge significantly 

from the expectation derived from residential data, with lower rates 
around 5,500–5,350 and 5,100–4,900 cal BP, and higher rates around 
4,800–4,300 and 4,000 cal BP. 

5. Discussion 

The Bayesian chronological model presented here is most likely the 
first of many attempts in providing a more accurate chrono-typological 
sequence for the J�omon period. We intentionally decided to not present 
point-estimates of the start/end date of the ceramic phases to avoid 
conveying a false impression of a precision that cannot be realistically 
achieved. We argue, instead, that conversions from a relative to an ab-
solute chronological framework should fully embrace all forms of un-
certainty, including those defining the chronological boundaries of 
individual phases and periods. 

Our case study demonstrates the importance and implications of 
defining a statistical framework for chrono-typological phases. This 
paper constitutes the third attempt, after Imamura (1997) and Crema 
(2012), in generating a time-series of pit-dwelling frequency based on 
the same original data. Although both previous works and our analyses 
have highlighted comparable fluctuations in the number of residential 
units, there are some notable differences in the timing of these events 
that are worth noting. Perhaps the most relevant case is the Middle 
J�omon rise and fall. Imamura (1997) original work was based on an 
earlier chronology based on uncalibrated dates, with the rise of the 
Middle J�omon “boom” dated at ca. 5,000 bp (ca. 5700 cal BP) and the 
decline after 4,400 bp (ca 5000 cal BP), while Crema (2012) reassess-
ment suggested the rise starting from 5,500 cal BP and the decline from 
4,700 cal BP. Our analysis has instead revealed that the increase in 
population size started at 5500 cal BP (confirming the results of Crema, 
2012) with the decline stage starting as earlier as 4,900 cal BP (thus 
somewhat closer to Imamura’s original estimate). The implication of an 
earlier onset of the Middle J�omon decline is particularly noteworthy as it 
cast further doubts on the established narrative of a mid-5th millennium 
cooling or the 4.2 k event as a driver of the population decline (c.f. 
Imamura, 1997; Yasuda, 2004; Suzuki, 2009; Tsuji, 2013; Taniguchi, 
2019). 

The absolute chronological framework offered by the combination of 
Bayesian modelling and Monte-Carlo simulation has also enabled an 
evaluation of the dates as data approach, following similar works carried 
out by few others (e.g. Palmisano et al., 2017, Tallavaara and Pesonen, 
2018). Our results indicate an overall agreement across the two proxies, 
reinforcing the evidence of multiple episodes of possible demographic 
fluctuations between 8,000 and 3,000 years ago. However, we also 
identified several notable discrepancies: the SPD curve shows an earlier 
timing of the Middle J�omon rise-and-fall and an overall higher relative 
density of dates during the Late and Final J�omon (i.e. ca 4,500 to 3,000 
cal BP). 

One plausible explanation for these discrepancies is the major shift 
from nucleated to a dispersed settlement pattern between the Middle 
and the Late J�omon periods (Taniguchi, 2005, Crema, 2013, see Palm-
isano et al., 2017 for similar interpretations in Central Italy). The 
binning protocol used in this paper and elsewhere (cf. Timpson et al., 
2014) reduces the effect of inter-site variation in sampling intensity, but 
effectively makes the SPD a proxy of settlement density that disregards 
size variation. It follows that if the number of settlements is reduced, but 
the average size increased due to nucleation, the SPD might signal a 
decline while the time series of residential density show the opposite 
trend. Similarly, an episode of dispersion and settlement fission to 
smaller communities might show an increase in the SPD (larger number 
of sites) matched with a decrease in residential density (smaller number 
of residential units). 

Thus one possible hypothesis that could explain the mismatch 
observed in Fig. 3 can be summarised as follows: 1) the faster (and 
earlier) increase in the SPD around 5400 cal BP is the result of an episode 
of territorial expansion and repeated episodes of settlement fission; 2) 

Fig. 2. Composite kernel density estimates derived from the simulated dates of 
J�omon pit-dwellings from Southwest Kanto (a) and Chubb highland (b). The 
envelope represents the 95% percentile interval of the kernel densities across 
the 5,000 simulations, and the solid line the average value for each calen-
dar date. 
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the subsequent decline in the SPD during the peak in residential density 
is the outcome of settlement nucleation and population growth; and 3) 
the overall higher relative density of SPD during the first few centuries of 
the 5th millennium is a signature of fission events to smaller settlements. 
A similar small mismatch between site counts and dwelling counts have 
been observed elsewhere and has indeed been explained by episodes of 
nucleation/dispersions (e.g. Crema, 2013, see also below). Unfortu-
nately, the pit-dwelling count data provided by Suzuki does not record 
membership of individual pit-dwelling to specific settlements, and hence 
this hypothesis cannot be directly tested in this context by comparing 
the SPD to a time-series of occupied settlements. 

Archaeological evidence does, however, suggest several significant 
changes in the settlement pattern during the second half of the Middle 
J�omon period (phases C11~C14 here). Stratigraphic evidence shows an 
overall decrease in the occupational span of individual pit-dwellings 
between the Kasori E2 (phase C11) and the Kasori E3 (phase C12) 
phases, with the latter characterised by shorter, repeated re-occupations 
in large nucleated settlements (Kobayashi, 2016). As a consequence, the 
same temporal window was characterised by a higher number of resi-
dential units that do not necessarily translate into an increase in the 
underlying population size. During the subsequent Kasori E4 phase 
(phase C13) these large settlements fissioned into smaller sites, with a 

much shorter occupational span that suggests an increased level of 
residential mobility (Kobayashi, 2004). This shift from nucleated to 
dispersed settlement patterns have been commonly explained as the 
consequence of a change in subsistence economy triggered by the 4.2 
cooling event (c.f. Suzuki, 2009). However, the possibility of local 
resource overexploitation cannot be dismissed, especially considering 
how the cooling event has most likely occurred after the shift in settle-
ment pattern and the decline in the number of pit-dwellings (Kobayashi, 
2004). An interesting parallel could also be drawn to the growth and 
decline of major J�omon settlements such as Sannai-Maruyama in 
Northern Japan. Habu (2008) hypothesise that a plant-based subsistence 
intensification (e.g. chestnuts and other nuts) sustained the initial 
growth of this and possibly other settlements in the region. This 
increased over-specialisation, however, made J�omon communities 
overpopulated and increasingly less resilient to episodes of minor cli-
matic fluctuations affecting plant productivity, eventually leading to the 
demise of large nucleated settlements. Similar ‘rigidity traps’ (Carpenter 
and Brock, 2008) might have occurred in Central Japan as well, but 
further studies integrating demographic, climatic, and subsistence data 
will be necessary to explore this hypothesis in detail. 

The availability of an absolute chronological framework enables us 
to make tentative estimates of the annual percentage growth rate 

Fig. 3. Temporal frequencies of residential units (a) and summed probability of radiocarbon dates (b) and their correlation over a 1,000 years moving window (c). 
Error bars in panel a and the grey envelope in panel c are based on 95% percentile interval across the 5,000 Monte Carlo simulations. 
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observed during the J�omon period. For example, the annual growth rate 
during the Middle J�omon “boom” (between 5,500–5,400 and 
5,000–4,900 cal BP) was 0.45% (95% percentile interval: 0.33–0.74%) 
for the pit-dwelling data and 0.09% (95% percentile interval: 
� 0.01–0.21%) for the radiocarbon dates, an order of magnitude above 
the long-term average recorded for hunter-gathers elsewhere (see Zahid 
et al., 2016) but within the range expected for shorter-term fluctuations 
(see also Bettinger, 2016). The discrepancies between the two figures are 
in part due to the different timing of the events (see Fig. 3), and the fact 
that the SPD should be interpreted as a proxy of settlement growth rate 
rather than population growth rate. 

While these are promising results, there are several challenges both 
from the standpoint of paleo-demographic inference and the methods 
presented here. Aside from shifts in settlement pattern, we also need to 
consider potential changes in the duration of archaeological events. Both 
intra- and inter-annual variations in the length of site occupation could 
change the ratio between site counts and population size and hence, for 
example, potentially lead to false signals in SPD depending on the choice 
of the bin size for aggregating radiocarbon dates from the same site. The 
same problem applies to the duration of residential units (see above). 
Ethnographic accounts and archaeological evidence suggest that pit- 
dwellings can have different duration, lasting somewhere between 3 
and 15 years (Watanabe, 1986; Muto, 1995). Variations in residential 
stability can thus yield higher or lower number pit-dwellings in a given 
time-window. In the case of J�omon period, Kobayashi (1991) has 
inferred from the number of seasonal rebuildings of hearths a maximum 
use of 8 years for Initial J�omon pit-dwellings, while for the late Middle 
J�omon period, stratigraphic evidence of overlapping features and 14C 
dates suggest an average occupation span of ca. 13 years, suggesting 
temporal variations in the use-life of residential units (Kobayashi, 2004). 
Habu (2001) has also extensively examined residential data and lithic 
assemblage of the second half of the Early J�omon period in the same 
area, providing evidence for sub-regional variations and temporary 
shifts between collector and forager-like strategies. 

The development of a reliable regional Bayesian chronological 
model of archaeological phases has also its own challenges. While in 
stratigraphic contexts many of the assumptions that act as priors and/or 
constraints in the chronological modelling can be well supported, the 

same degree of confidence cannot be easily justified when we are 
considering multiple sites located in a wider geographic area and 
examined potentially with different sampling strategies. For example, a 
strongly imbalanced data might “pull” the posterior estimates of a 
particular ceramic phase towards the occupation period of a particular 
site that happened to have a larger sample of radiocarbon dates. The use 
of hierarchical models (cf. Banks et al., 2019), or the formal integration 
of the spatial dimension are desirable directions to be undertaken in 
order to solve at least some of these issues. 

6. Conclusion 

Notwithstanding the challenges entailed by developing Bayesian 
models of chrono-typological sequences, the ability to use an absolute 
chronological framework while simultaneously accounting for different 
forms of uncertainty is a crucial step for reusing legacy data in archae-
ology. Our case study showcases both the necessity and the potential 
benefits of such an endeavour, particularly in the context of prehistoric 
demography where the lack of alternative proxies to radiocarbon dates 
can severely limit the assessment of the reliability of demographic re-
constructions as well as the opportunity to identify and test key cova-
riates and hypotheses. 

From the perspective of J�omon archaeology, the comparison be-
tween SPDs and residential data has provided an initial assessment of 
the temporal scale at which settlement dynamics can no longer be 
ignored, and the choice of the population proxy becomes relevant. At 
coarser temporal scales of 500–1000 years the agreement between the 
two proxies is robust and reassuring, but below these thresholds, we 
identified some noticeable differences in the timing and the magnitude 
of specific fluctuations that need to be accounted for. These conclusions 
are context-specific and while they cannot be easily extrapolated to 
other regions or periods, offer the foundation for future research in 
prehistoric demography. 
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