
introduction

One of the core assumptions hold by most spatial analyses is that the generative process behind the 
observed pattern is stationary. This implies that statistical properties such as the intensity of a point process, 
the nature of the relationship between dependent and independent variables, or the patterns of spatial 
interaction are independent of their absolute location, and hence homogenous across space. The assumption 
is often adopted implicitly and not exclusively in spatial analyses; for example, when inferring population 
trajectories of a particular region (using site counts or density of radiocarbon dates), the pattern observed 
in the aggregate time- series is considered to be, at least to some extent, representative of the region as 
a whole. The advantage of holding this view is that information can be reduced into global­ statistics, 
enabling for example the description of complex and multi- scalar patterns of spatial interaction using 
a single, distance- based function (cf. Bevan this volume, Figure 4.3). Yet in many cases holding such an 
assumption might be problematic as many processes do vary in their properties across geographic space. 
They are, in other words, spatially heterogeneous and non-­stationary. Under these circumstances choosing 
inappropriate methods that assume stationarity might at best hinder the detection of interesting variations 
and outliers in the data, and at worst lead to an erroneous understanding of the overall pattern.

The common way to informally approach potential issues derived from non-­stationarity is to simply 
select a window of analysis where the generative process can be assumed to be spatially homogeneous. 
Intuitively speaking stationarity is negatively correlated with scale as larger study areas are more likely 
to incorporate variation in spatial properties, making the use of global statistics less appropriate. The 
problem is that the exact scale where the assumption stops being valid can vary depending on the nature 
of the process under investigation and the idiosyncrasies of the specific case study. While informal rules 
of thumb might be appropriate in some situations, stationarity should not be an a­priori assumption, but 
rather a hypothesis to be evaluated. This is particularly the case for large scale synthetic research that 
harnesses the availability of increasingly larger collections of digital data, ranging from spatial databases 
of radiocarbon dates (e.g. Shennan et al., 2013; Chaput et al., 2015) to remotely sensed data (e.g. Menze, 
Ur, & Sherratt, 2006; Biagetti et al., 2017).

It is worth noting that stationarity is a property of the model, and not of the observed data per se 
(Fortin & Dale, 2005). This is a crucial point, as in practical terms non-­stationarity arises from model 
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misspecification. Stationarity is an assumption whereby statistical properties such as mean or variance are 
considered to be spatially invariant. But these properties do often vary over space as a consequence of 
some unidentified variables, and failing to appropriately model these will drastically reduce our capacity 
to explain spatial heterogeneity and lead to the incorrect use of global statistics. (Fotheringham, Bruns-
don, & Charlton, 2000). A trivial example can explain this issue. Suppose that someone is analysing the 
regional distribution of archaeological sites over a rugged landscape characterised by patches of flat areas 
that are more suited for human occupation. For the sake of simplicity, we can assume that the only driver 
of site density is the terrain morphology, with the intensity of occupation being five times larger in the flat 
patches. The density of archaeological sites will not be homogenous over space, but instead characterised 
by several clusters located in these patches. Examining this data and computing a single estimate of site 
density (i.e. computing a global statistic) would be inappropriate, and similarly analysing for spatial inter-
action might misleadingly suggest evidence of second- order interaction (when in fact the sites are not 
attracted to each other but only to absolute spatial locations). The problem can be solved by either ana-
lysing the flat patches separately by partitioning the study area or by specifying a variable that explains the 
variation in site density (i.e. terrain ruggedness). Ignoring either option will lead to incorrect inferences.

The substantial growth in the availability of Geographic Information Systems (GIS)- based spatial data 
in recent years has undoubtedly eased the creation of more sophisticated and complex models that can 
account for different kinds of spatial dependencies induced by environmental variables. If appropriately 
identified and modelled, these advances can limit the risk of model misspecifications. However, this is not 
necessarily a trivial task, and the situation is worsened for two reasons. First, spatial differences can also 
arise simply as a consequence of heterogeneity in archaeological research design. Different states, regions, 
and individuals often employ different sampling strategies resulting in biases that can exhibit strong spatial 
structure. Figure 9.1, for example, shows the location of North American archaeological sites included in 
the Canadian Archaeological Radiocarbon Database (CARD, v.2.0). The overall variation in the density 
of archaeological sites with radiocarbon dates is a combined effect of past population density and differ-
ences in sampling intensity, but the remarkable strength of the latter is not always as self- evident as in the 
case of the state of Wyoming, shown here as a rectangular patch with a disproportionately high sample 
density. Despite the known role of these forms of sampling biases, archaeological spatial analyses have 
rarely addressed this issue formally (but see Bevan (2012) for an exception; see also Banning, this volume). 
Yet examples in fields such as ecology showcase how the challenging task of quantifying and formally 
integrating sampling bias is not only possible but can dramatically improve the predictive power of a 
model (see Syfert, Smith, and Coomes (2013) and Stolar and Nielsen (2015) for applications in species 
distribution modelling).

Second, whilst model misspecification and sampling bias are, at least potentially, tractable problems, 
non- stationarity can also arise because different individuals might genuinely exhibit different relation-
ships across space. Cultural, behavioural, and economic differences can in fact lead to different practices, 
attitudes, and preferences towards the very same environmental variable, and at the same time these varia-
tions are likely to exhibit spatial autocorrelation. Global analysis will, by definition, ignore these potential 
variations as its core assumption is that individual observations are interchangeable and originating from 
the same process. This can be regarded as a particular form of model misspecification (e.g. one could, 
at least in theory, specify categorical variables to depict cultural affiliations), albeit one where identify-
ing and quantifying key variables is difficult, if not impossible. From a theoretical standpoint ignoring 
potential spatial heterogeneity arising from these factors is an example of environmental determinism (see 
Gaffney & van Leusen, 1995; Jones & Hanham, 1995), an approach that ‘denies geography and history’ by 
assuming that ‘every time and everywhere is basically the same’ (Jones 1991, p8; cited in Fotheringham 
et al., 2000, p. 95).
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Method

How then can we identify non- stationarity? How can we discern cases where using global statistics is 
still appropriate in contrast to instances where model misspecifications, sampling bias, and un- modelled 
cultural variables can deeply undermine the results of the spatial analysis? Within a typical modelling 
framework (e.g. regression analysis), the standard way to tackle this issue is to examine for the presence 
of spatial autocorrelation in model residuals. While this is an efficient solution that directly examines the 
assumptions of global statistics, the detection of spatial structure in the residual provides only a general 
indication of misspecification and does not provide sufficient details on the nature of the spatial variation 
per­se.

One way to approach this problem is to break down the average properties observed at the global 
scale and focus the perspective on to its local scale constituents. Thus rather than yielding a single statistic 
describing the entire window of analysis, the objective is to retrieve multiple values, one for each of the 
sampled locations. By analysing these statistics or even simply visualising them on a map, regularities and 
exceptions can be identified. This provides clues for identifying plausible missing variables or provides 
some insights into the nature of a culturally- driven spatial heterogeneity. The growth of global infor-
mation systems (GIS) in the mid- 90s has particularly fostered the development of a suite of statistical 

Figure 9.1 Screenshot depicting the distribution of radiocarbon dates available from the Canadian Archaeo-
logical Radiocarbon Database, version 2.1 (Martindale et al., 2016). A colour version of this figure can be 
found in the plates section.



158 Enrico R. Crema

techniques, generally referred to as local­spatial­analysis, that implements this shift from a global to a local 
perspective. These include both local versions of pre- existing global statistics (e.g. Local Ripley’s K, 
Local Moran’s I, Geographically Weighted Regression, Spatial Expansion Method, etc.) as well as pur-
posely developed new methods (e.g. the geographical analysis machine, GAM, by Openshaw, Charlton, 
Wymer, & Craft, 1987, but also the locally-­adaptive­model­of­archaeological­potential, LAMAP, by Carleton, 
Conolly, & Iannone, 2012).

While these techniques vary in their details (see below), they generally share two main properties: 
(1) statistics are computed for each observed sample location, and hence they can be “mapped”; and 
(2) statistics are computed by weighting the contribution of samples based on the distance to each focal 
observation, i.e. they are based on local neighbourhoods that can be specified in a variety of ways (e.g. 
contiguity in polygon data, a fixed number of ‘nearest’ neighbours, cut- off distance, distance decay func-
tions etc. . . . (see Getis & Aldstadt, 2010, for a review). The subsections below provide a brief summary 
of the key concepts pertaining to the most commonly used forms of local spatial analysis, and a review 
of their archaeological applications.

Local point pattern analysis

Point pattern analysis (see Bevan, this volume) refers to a body of statistical techniques designed to assess 
the spatial distribution of entities that can be described as points located most typically (but not necessar-
ily) on a two- dimensional plane. The underlying processes behind a given point pattern are determined 
by exogenous and/or endogenous factors. The former is often referred to as a first-­order­effect (Bailey & 
Gatrell, 1995), or induced­spatial­dependency (Fortin & Dale, 2005) and includes factors that are indepen-
dent from the phenomena of interest such as topography, soil, or distance to key resources. Endogenous 
factors are instead referred to as a second-­order­effect (Bailey & Gatrell, 1995), or inherent­spatial­dependency 
(Fortin & Dale, 2005). These include factors that are intrinsic to the phenomena of interest, such as the 
repulsion between settlements resulting from territoriality, or the aggregation of house- units driven by 
socio- economic principles. The goal of point pattern analysis is to discern and model these two forms 
of dependency.

Archaeological applications of point pattern analysis have a long tradition that goes back to the early 
1970s (see references within Hodder & Orton, 1976), and since then the focus has been predominantly on 
methods designed to discern between regular, clustered, and random patterns such as the Nearest Neighbour 
Index (Clark & Evans, 1954) or the Ripley’s K function (Ripley, 1976). Both of these methods are global 
statistics, and while they provide easy to interpret numerical indices and can be used within a hypothesis 
testing framework, they generally assume stationarity and do not directly distinguish induced and inherent 
spatial dependency. This can be problematic in a variety of ways. First, the standard null hypothesis used 
in most techniques is a spatially homogeneous Poisson process where the intensity (i.e. density) is estimated 
from the observed data. Techniques such as Ripley’s K function or the Pair Correlation Function (PCF) are 
designed to detect spatial interaction (i.e. inherent spatial dependency) as instances of clustering or disper-
sion that are not accounted for by the null model (cf. Figure 9.2(a) vs. Figure 9.2(b); see Bevan, this volume). 
Both techniques extrapolate a measure of local density at different spatial scales and compare them against 
expectations from this null model. Statistical significance is then obtained by simulating point patterns 
under the null hypothesis and generating a simulation envelope: observed statistics above this envelope are 
then interpreted as evidence of clustering at the given spatial scale, whilst statistics below the envelope are 
regarded as evidence of dispersion (see Bevan, this volume for further details).

However, clustering can also be the result of induced spatial dependency that is often expected in 
a larger window of analysis (e.g. settlement clustering along rivers, or on flat patches – cf. the earlier 
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Figure 9.2 Simulated point patterns with associated observed (solid line) and expected (dashed line, under 
Complete Spatial Randomness) L function (a variant of Ripley’s K function where the theoretical expectation 
of Complete Spatial Randomness (CSR) is a straight line): (a) homogeneous Poisson process; (b) clustered point 
process; (c) spatially inhomogeneous Poisson process with different intensities between left and right sides of 
the window of analysis (separated by the dashed line); (d) second- order spatial heterogeneity with a combina-
tion of regular (left) and clustered (right) patterns. The function suggests aggregation (clustering) when the 
observed L function is above the expected value and segregation (regular spacing) when below.

example). If the objective is the detection of spatial interaction then using a homogeneous Poisson process 
in this case can be regarded as a particular form of misspecification (see Figure 9.2(c)). The issue can be 
tackled by using more sophisticated techniques that can replace the null hypothesis with a spatially inho-
mogeneous version of the Poisson model, where the intensity varies as a function of external covariates. 
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For example, Eve and Crema (2014) investigated the distribution of Bronze Age houses at Leskernick 
Hill (Cornwall, UK) by first fitting a point process model using a range of covariates including elevation, 
slope, and visibility of landmarks (i.e. modelling induced spatial dependency), and subsequently used a 
residual K function to detect clustering that was not accounted for by their fitted model (i.e. inherent 
spatial dependency).

This solution is feasible as long as the inhomogeneous Poisson model can be assumed to be stationary. 
However, the relationship between the intensity of the point process and the external variables (described 
by the parameters of the fitted model) might also vary over space. If this is the case a global fitted model 
is no longer a viable option and one should adopt alternative solutions (see Baddeley (2017)) similar to 
those used in geographically weighted regression (see below).

Furthermore, even when variation in the externally induced spatial dependency is taken into account, 
the nature of spatial interaction (i.e. inherent spatial dependency) might still vary over space (Fig-
ure 9.2(d)). Such second- order heterogeneity (Pélissier & Goreaud, 2001) cannot be tackled by the most 
commonly adopted point- pattern analysis techniques such as Ripley’s K function or Nearest Neighbour 
Index, as the mathematics underpinning the methods described above are based on aggregate statistics 
(e.g. the mean density within a specific radius or the average distance to the nearest neighbour) that 
effectively ignore variation between observations.

The solution in this case is to measure the same statistic for each observation point and map their 
variation over space. The most widely adopted example of this approach is Getis and Franklin’s (1987) 
second-­order­neighbourhood­analysis, which is effectively equivalent to a local version of Ripley’s K function. 
A few archaeological examples employ this technique either in its basic form (e.g. Palmisano, 2013) or in 
its bivariate version, where the inherent spatial dependency is investigated in terms of relationship attrac-
tion or repulsion between two classes of points (e.g. two different artefact types). For example, Orton 
(2004) re- examined the flint artefact distribution within the Mesolithic site of Barmose I identifying 
potential activity areas as an alternative to cluster analyses. Crema and Bianchi (2013), and more recently 
Riris (2017), applied the same suite of techniques on survey data, operationalizing the transition from a 
site- centric to artefact- centric analysis of surface scatters. Both of these studies identified local patterns 
of inter- type artefact aggregation and segregation (with statistical significance obtained from random 
permutation tests), and more importantly ‘mapped’ the variation of such relationships over space, iden-
tifying complex patterns within and between clusters that cannot be adequately described by standard 
global spatial analysis. Figure 9.3 compares, for example, the output of a global (Figure 9.3(b)) and a local 
(Figure 9.3(c)) point pattern analysis aimed to assess the aggregation/segregation of stone tools made of 
different raw materials (see Crema & Bianchi (2013) for further details). The global bivariate L function 
suggest an aggregation between different materials (in this case Gafsa sourced flint vs flint sourced from 
elsewhere) up to 350 meters. The local version of the same analysis shows, however, that this aggregation 
occurs only in some areas (see filled dots in Figure 9.3(c)).

Local indicators of spatial association (LISA)

One of the most commonly adopted forms of local spatial analysis is a suite of geostatistical techniques 
commonly referred to as local­indicators­of­spatial­association (LISA; see also Fusco and de Runz, this volume). 
These are designed to determine for any given sampled location and its local neighbourhood the extent of 
clustering of similar observed values (Anselin, 1995). The primary objective of LISA is thus to decompose 
global indices of spatial autocorrelation into their local constituents in order to identify the location of 
outliers and local spots of non- stationarity. Although the various association statistics (i.e. local Gamma, 
local Moran, and local Geary), differ slightly from each other they generally all employ Monte- Carlo 
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simulations to assess statistical significance and formally define spatial neighbourhoods using a weighted 
scheme (Getis & Aldstadt, 2010).

While the most conventional use of LISA is to provide a better diagnostic tool of regression analysis by 
identifying where residuals exhibit strong autocorrelation, the range of archaeological applications testifies 
how this suite of techniques (along with other local versions of geostatistical analyses) can be used in a 
range of contexts. For example, Premo (2004) used Moran’s local I (Anselin, 1995) and Getis’s local Gi* 
statistics (Getis & Ord, 1992; a related technique designed to identify clusters distinguishing whether they 
are low or high values compared to the mean) to explore the spatial distribution of terminal long- count 
dates carved on Classic Maya monuments. The objective in this case was to determine whether these 
proxies of ‘collapse’ (the terminal dates indicate the most recent year when elites at a particular site raised 
monuments) exhibit local variations in their extent of autocorrelation, and identify the presence and the 
location of significant clusters of early and late dates. Crema, Bevan, and Lake (2010) also used the local 
Gi* statistics as an exploratory analysis to identify areas of low or high chronological uncertainty in Middle 
to Late Jomon pit- dwellings in central Japan. More recently Styring, Maier, Stephan, Schlichtherle, and 
Bogaard (2016) used the same analysis on the δ15N value of cereal grains at the Neolithic site of Hornstaad- 
Hörnle IA, Germany, to investigate patterns of inter- household variation in crop- husbandry practices.

Geographically weighted regression

Regression analyses are one of the most widely used statistical techniques in archaeology and often entail 
observations that are spatially situated (Hacıgüzeller, this volume). Typical examples include estimates 
of the speed of the spread of farming using radiocarbon dates (e.g. Pinhasi, Fort, & Ammerman, 2005), 
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Figure 9.3 Lithic distribution analysis from the Sebkha Kelbia survey, Tunisia (after Crema & Bianchi, 2013), 
showing contrasting results between global and local bivariate L functions of stone tools divided by their raw 
material (Gafsa flint vs. flint sourced elsewhere): (a) distribution of the analysed stone tools (filled circle: Gafsa 
sourced flint; hollow circle: flint sourced from elsewhere); (b) bivariate L function showing significant segrega-
tion between the two classes between 20 and 320 meters (MC: Monte- Carlo); (c) local bivariate L function 
scale showing evidence of aggregation at 100 meters (black dots indicate location of Gafsa sourced flints with 
a statistically significant proportion of neighbours composed by flint sourced from elsewhere).
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the fitting of fall- off curves of proportion data (e.g. artefact type) from potential centres of production 
(e.g. Eerkens, Spurling, & Gras, 2008), or the modelling of site presence/absence via logistic regression 
(e.g. Carrer, 2013; see Kvamme this volume). Most of these regression models assume that: (a) samples 
are independent; and (b) the observed relationships between variables are the same across space, i.e. they 
assume stationarity. The latter implies that estimates of the rate of expansion are assumed to be constant 
over space, decrease in the proportion of artefact types from the source is assumed to be isotropic (i.e. 
there is no directionality in the fall- off), and that the independent variables are assumed to have the same 
role in determining the likelihood of site presence across the study area. As for the other cases, if these 
assumptions are not justified, models can potentially be misspecified and estimates biased.

While diagnosis of regression residuals can help identify problematic cases, they do not explicitly 
model spatial heterogeneity and hence do not provide means to formally approach the non- stationarity 
problem (i.e. they are not able to inform how the relationships vary across space). The last two decades 
however have seen the development of a wide range of regression techniques designed for the analyses of 
spatial data. Problems such as the non- independence and autocorrelation of sample observations are being 
tackled by tailored methods such as spatial auto- regressive models (see Gil et al., 2016 for an archaeo-
logical application). Geographically­ Weighted­Regression (GWR) (Fotheringham, Brunsdon, & Charlton, 
1998; Fotheringham et al., 2002) is one such technique that is suited for instances where the relationship 
between variables are known to be spatially heterogeneous. The method is essentially a ‘local’ version of 
regression analysis where global model parameters are replaced by continuous functions that are depen-
dent on the spatial coordinates of each location. Thus a ‘global’ regression model can be regarded as a 
special case of the GWR, whereby the output of these continuous functions do not vary across space. 
By allowing model parameters to vary across space this technique takes into account spatial heterogene-
ity (reducing model misspecification), and allowing at the same time the possibility to ‘map’ the spatial 
variation of the parameters (and hence the spatial variation in the relationship between dependent and 
independent variables). Geographically weighted regression assumes that when estimating the parameters 
for a given location i, sites in proximity have a larger impact in the estimate of the model parameters than 
those that are further away. This is achieved by weighting the contribution of neighbouring data points 
using some distance decay function. Geographically weighted regression shares some similarities with 
the spatial­expansion­method (Jones & Casetti, 1992), an earlier technique that similarly highlighted the 
importance of spatially varying relationships. Whilst the spatial­expansion­method is a relevant precursor of 
GWR, it provides less flexibility in defining how parameters vary over space, as it is designed to capture 
general directional trends and its form needs to be assumed a priori (Fotheringham et al., 2000).

Despite its ability to address potential issues of environmental determinism, archaeological applications 
of GWR have been comparatively limited. Gkiasta, Russell, Shennan, and Steele (2003) explored local 
variations in the rate of the spread of farming in Neolithic Europe, whilst Bevan and Conolly (2009) 
examined how covariates such as slope, vegetation, and geology have different relationships to the surface 
pot- sherd density in different parts of the Greek island of Antikythera using a geographically weighted 
zero- inflated Poisson regression. The technique has also been explored in the context of predictive 
modelling of site locations (Löwenborg, 2010), as well as for larger synthetic research such as Linearband-
keramik (LBK) faunal remains in western Europe (Manning et al., 2013).

case study

The core principles shared across the methods described above can be applied to virtually any analysis that 
seeks to tackle non- stationarity. One recent archaeological example is the spatial extension of the summed 
probability distribution of radiocarbon dates (SPDRD). The non- spatial version of this technique has 
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recently renewed a strong interest in prehistoric demography, as the increasing availability of a large col-
lection of radiocarbon dates is providing a new proxy for inferring past population trajectories within 
an absolute chronological framework. While the core assumptions of this “dates as data” (Rick, 1987) 
approach are still being discussed, it is undeniable that SPDRD is quickly becoming part of the standard 
toolkit in regional studies. In particular, the production of demographic time- series within an absolute 
chronology is opening new possibilities to infer the role of past climatic change (e.g. Kelly, Surovell, 
Shuman, & Smith, 2013; Warden et al., 2017) or to explore cross- regional divergences in demographic 
trajectories (e.g. Timpson et al., 2014; Crema, Habu, Kobayashi, & Madella, 2016), potentially at the 
global level (Chaput & Gajewski, 2016).

The possibility to incorporate a spatial dimension is particularly noteworthy here as it requires a care-
ful balance between sample size and the spatial extent of the window of analysis. Because the shape of 
SPDRD is subject to sampling error, a formal assessment of its shape (i.e. the hypothesised demographic 
trajectories) will require a sufficient number of radiocarbon dates. While some suggestions for a thresh-
old size have been suggested (e.g. Williams, 2012), the optimal size ultimately depends on the specific 
null hypothesis that is being tested (the most common ones being exponential and logistic population 
growths) and the effect size being sought. With other things being equal, the most straightforward solu-
tion to increase the sample size is to expand the size of the window of analysis. This, however, means that 
stationarity is harder to justify as different regions are likely to experience heterogeneous demographic 
histories (cf. sub- regions in Shennan et al., 2013 and Timpson et al., 2014) as well as different sampling 
strategies (see Figure 9.1, Bevan et al., 2017; see also Banning, this volume). The latter in particular 
hinders the straightforward application of methods such as Kernel Density Estimates (KDE; see Bevan, 
this volume), as the number of radiocarbon dates is determined at least in part by local differences in 
sampling intensity. Attempts to overcome this issue have been rare, with the notable exception of Chaput 
and Gajewski (2016) who employ relative risk surfaces (see also supplementary materials in Bevan et al., 
2017) by taking the ratio of each KDE map by the overall sampling intensity. While this approach is a 
valuable correction in the observed pattern it does not distinguish between genuine instances of spatial 
heterogeneity from variations arising from sample error.

Crema, Bevan, and Shennan (2017) have recently explored this issue by developing a local spatial 
analysis designed to identify presence of spatial heterogeneity in the demographic trajectories hypoth-
esised from the SPDRDs, enabling the formal assessment of non- stationarity. The method involves the 
following six steps (for the full description see the original paper):

1) Compute for each site i a local SPDRD which is created by summing all radiocarbon probabilities 
but weighting (using an exponential decay function) the contribution of dates from neighbouring 
sites as function of distance from i.

2) Define temporal slices (e.g. 7500–7001 cal BP, 7000–6501 cal BP, etc.) and compute the geometric 
growth rate between abutting pairs for each local SPDRD (e.g. between 7500–7001 and 7000–6501 
cal BP, between 7000–6501 cal BP and 6500–6001 cal BP, and so on . . .).

3) Randomly permute the spatial coordinates of the radiocarbon dates, so that the entire set of dates 
associated to a particular location x is given a new location y, and then execute steps 1 and 2 above.

4) Repeat step 3 n times, so that for each transition (e.g. from 7500–7001 to 7000–6501 cal BP) at each 
site, there is one observed geometric growth rate (obtained in steps 1–2), and n­simulated geometric 
growth rates (obtained in step 3). The latter is the expected pattern under the assumption of spatial 
stationarity (i.e. the same expected growth rate across space with variation entirely determined by 
sampling error). Notice that the envelope of the simulated dates will be narrower in regions with a 
higher sampling intensity and wider in areas with a lower sampling intensity.
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5) Compare the observed and simulated growth rates for each location and compute the p- value for 
significance testing, equivalent to (r+1)/(n+1) where r is the number of replicates where the simu-
lated growth rate is lower (or higher) than the observed rate.

6) Use the distribution of p- values to compute false discovery rates (q- values, Benjamini & Hochberg, 
1997) to take into account expected inflation of type I error (i.e. incorrect rejection of a true null 
hypothesis) due to multiple hypothesis testing.

Figure 9.4 shows the result of this local analysis applied in the context of Neolithic Europe. The red 
dots indicate site locations with a significant (q- value < 0.05) local positive departure from the expected 
growth rate under stationarity in the transition between 6500–6001 cal BP and 6000–5500 cal BP (transi-
tion IV), whilst the blue dots indicate the opposite (lower than expected rate). If all regions experienced 
similar population trajectories (as inferred from the density of radiocarbon dates) and local variations in 
the SPD were purely the result of sampling error, we would not expect to observe any significant positive 
or negative departures. The insets show the result of two particular locations where the observed growth 
rate (solid line with filled dots) is higher and lower than the expected rates under stationarity (dashed line 
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Figure 9.4 Local spatial permutation test of the summed probability distribution of radiocarbon dates 
(SPDRD) from Neolithic Europe showing locations with higher (red) or lower (blue) geometric growth rates 
than the expectation from the null hypothesis (i.e. spatial homogeneity in growth trajectories) at the transition 
period between 6500–6001 and 6000–5501 cal BP. The insets on the right show the observed local geometric 
growth rates and the simulation envelope for locations a and b on the map (see Crema et al., 2017, for details). 
A colour version of this figure can be found in the plates section.
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with hollow dots) and its associated simulation envelope (grey region) obtained from 10,000 permuta-
tions. The result indicates statistically significant instances of spatial heterogeneity in growth rates, with 
southern Britain, southern Ireland, the Baltic regions, and parts of central Germany experiencing higher 
growth rates while most of continental Europe within the study area have the opposite pattern.

conclusion

The substantial heterogeneity in the objectives, the type of data, and the scale of analysis, makes the appli-
cation of spatial analysis in archaeology a challenging and diverse task. Techniques are mostly developed 
in other fields and come with assumptions that were valid for the particular contexts they were designed 
for. Whilst generalised tools are highly desired, the underpinning assumptions are not easily transfer-
rable across different applications. The problem is exacerbated by the fact that too often we ignore the 
assumptions and their implications entirely, leading to a divergence between archaeological theories and 
spatial models.

The problem of non- stationarity is a good example of this; the majority of spatial statistics used in archae-
ology assume spatial homogeneity, yet the theoretical stance and interest of archaeologists is often focused 
much more on heterogeneity. Despite the availability of a substantial range of techniques that are designed 
to tackle non- stationarity (or to model spatially heterogeneous processes), archaeological applications are 
comparatively rare with global statistics still being the most commonly adopted approach. The growing 
amount of high quality data at increasingly larger spatial scales might however change this and promote the 
use of local spatial analysis. This will no doubt provide new perspectives on the human past, enabling us to 
answer questions that are perhaps in line with a wider range of theoretical approaches. Such a shift in scale 
will, however, require the creation of more tailored techniques as well as the retrieval of data that can provide 
the basis for exploring the effects of research bias. It is undeniable that with the increasing possibility to 
engage with larger spatial scales, we will have to face the impact of heterogeneous research practices. These 
will have a greater role in shaping the distributions we observe, hindering our ability to isolate the patterns 
we truly seek to study. The adoption of local statistics can help this endeavour but it is worth noting that 
these are ultimately exploratory tools and can never replace a global model where key missing variables are 
correctly integrated. Detecting spatial heterogeneity tells us only that there is something missing; we might 
estimate where and to some extent even how, but it will never tell us what they are. Furthermore, one should 
also avoid the temptation to exclusively rely on the inductive insights offered by the output of local analyses 
and conceiving them as the final stage of a research workflow. This is particularly so because the number 
of statistical hypotheses is generally as many as the number of observations. As a consequence, there is an 
increased possibility of incorrectly rejecting the null hypothesis even when this is false (type I- error). This is 
a known problem and one that cannot be easily solved by standard correction methods, such as Bonferroni, 
as tests are not entirely independent from each other and consequently an indiscriminate use of p- value 
adjustment can lead to overly conservative conclusions (i.e. type II errors). This is also a known issue within 
the literature of local spatial analysis (e.g. de Castro & Singer, 2006), and while some suggestions have been 
proposed there is no consensus towards a single solution. Ultimately, local analyses should not be considered 
as substitutes for global statistics but rather as a suite of complementary tools for evaluating assumptions, 
providing clues for searching for missing variables, and refining hypotheses.
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