
Chapter 8
Modelling Settlement Rank-Size Fluctuations

Enrico R. Crema

8.1 Introduction

This chapter explores the underlying causes of changes in settlement rank-size
distribution by modelling the dynamics of group fission and fusion and their
responses to different disturbance regimes. The theoretical framework underpinning
this exercise is based on the following assumptions:

• The amount of resources at a given location can influence the size of a group
located there;

• The relationship between group size and per-capita fitness is expected to increase
with increasing group size. Once a critical threshold is exceeded, this relationship
is reversed;

• Individuals are expected to improve their condition by means of spatial reposi-
tioning, though this will be constrained by limits in knowledge and energy.

An agent-based simulation has been developed in order to establish how variations
in the details of these assumptions can induce divergence in the system equilibria,
and then to explore how different forms of perturbations (mimicking various forms
of endogenous and exogenous environmental deterioration) can alter these.

The chapter will be structured as follows: Sect. 8.2 will provide the background
discussion, including an overview on some of the theories underpinning the
proposed model; Sect. 8.3 will discuss the details of the agent-based model and how
the three assumptions listed above have been formalised. It will also introduce the
four different models of disturbance processes examined here; Sect. 8.4 will present
the experiment design and the results of the simulation exercise; Finally, Sect. 8.5
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will discuss the wider implications of the model and the main conclusions of the
chapter.

8.2 Background

Fission and fusion of human groups can be inferred for a wide variety of temporal
scales. Intra-annual events are ethnographically known for many hunter-gatherer
groups, who often aggregate temporarily into large groups, only to disperse soon
after. For example, the Nootka Indians of the Pacific Northwest coast aggregated
into large confederacy sites during the summer while they fissioned into smaller vil-
lages during the winter (Drucker 1951, cited in Watanabe 1986). Other ethnographic
evidence shows how these fission-fusion cycles can occur with much less regularity
and lower temporal frequencies. Historical census data from the Hokkaido Ainu
hunter-gatherers provides a good example in this regard. During an interval of 14
years, several sedentary households of the Mitsuishi district fissioned from larger
groups or formed new settlements in an irregular fashion (Endo 1995). At a further
larger temporal scale, the alternation between dispersion and nucleation of farming
communities (Roberts 1996; Jones 2010) have been detected from both historical
and archaeological evidence.

Variations in the settlement size distribution are ultimately the result of two
processes: the movements of individuals and inter-group differences in the intrinsic
growth rate. The two are related to each other, and in most cases available
archaeological evidence is not sufficient to distinguish the outcome of one from
the other. However, we can acknowledge their existence if we identify variations
in the residential density of a region (a cumulative effect of changes in the overall
growth rate) or if we detect the presence of newly formed settlements in a given
time window (a direct consequence of fission events).

Despite the difficulty in obtaining direct and reliable proxies of settlement sizes,
archaeologists have been long interested in measuring the temporal variation of
settlement hierarchy, one of the most tangible consequences of these processes.
However, the skewed and long-tailed shape of most settlement size distributions
makes the adoption of common statistical measures impractical. Hence, settlement
systems are often described using the relationship between rank and size formalised
in the following equation (Zipf 1949):

Sr D S1 ! r!q (8.1)

where Sr is the size of the r ranked settlement, and q is a constant. Equation (8.1)
establishes a power-law relationship between size and rank, where the slope is
defined by q. When this constant is equal to 1, we obtain the so-called Zipfian
distribution, originally considered as equilibrium between “forces of unification”
and “forces of diversification” (Zipf 1949).
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Fitting equation (8.1) to archaeological data and obtaining empirical estimates
of q is a straightforward exercise, and allows us to quantitatively classify different
settlement systems. Thus, we can refer to primate systems when q > 1, that is when
we have few large and many smaller settlements. Conversely, when q < 1, the
system can be classified as convex, with the size distribution being more uniform
than the Zipfian expectation. However, Drennan and Peterson (2004) noticed that
most archaeological data do not appear to conform to such a log-linear relationship
between rank and size, and thus devised a more flexible measure explicitly based
on the amount of deviation from the theoretical Zipfian distribution (q D 1). Their
A-coefficient analysis is computed in two steps. First the observed rank-size plot
is rescaled, so that the area defined by the end-points of the theoretical Zipf-law
distribution is equal to 2. Then the area between the observed and theoretical rank-
size distributions is computed, with the area of sections beneath the Zipf’s law
pattern multiplied by !1. This ensures that the resulting number (the A coefficient)
is positive (up to 1) for convex, negative for primate, and close to zero for Zipfian
systems. The application of the A-coefficient analysis has increased the number of
archaeological cases where the empirical evidence suggests the existence of long-
term fluctuations between primate and convex systems (e.g. Drennan and Peterson
2004; Kohler and Varien 2010; Crema 2013a). Several authors have proposed
models of generative processes behind these empirically observed rank-size distri-
butions. Hodder (1979) compared the goodness of fit of different stochastic growth
models to archaeologically detected rank-size distributions, while more recently
Griffin (2011) developed an agent-based model where cycles of consolidation
and collapse of complex polities is the primary driver of changes in settlement
hierarchy. Others have suggested theoretical linkage between known settlement
models and expected deviations from the Zipfian distribution. Thus central place
theory, territorial isolation, and low system integration have been linked to convex
settlement patterns, while the spatial concentration of resources to the emergence of
primate systems (Johnson 1980; Savage 1997).

The two fundamental processes mentioned above (difference in growth rate and
movement of individuals) are still central in these models. Difference in growth
rate can be a consequence of variation in resource availability; isolation, low-
level integration, and territoriality can be effectively conceived as constraints in
the movement of individuals. Here, I consider two sets of theories proposed in
behavioural ecology that provide a robust and flexible framework for modelling
these two processes.

The first set looks at the attractive and repulsive effect of the external environ-
ment, primarily expressed in terms of resource availability. This induced form of
spatial dependency (Fortin and Dale 2005), is the central concept of the Ideal Free
Distribution (IFD) models (Fretwell and Lucas 1970; Tregenza 1995). The basic
prediction in this case is that, given an omniscient population with a complete lack
of constraints in movement, the expected population density on a patch will be
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proportional to the local resource density. This idea, often referred to as “habitat
matching rule” (Fagen 1987), is a consequence of an assumption formally described
by the following equation:

!i D Kj=nj (8.2)

where the fitness or gain (!) of an individual i at patch j is the ratio between
the amount of resource (K) and the number of individuals (n) located there. Thus
Eq. (8.2) will be maximised with the lowest population density, and any increase
of n will determine a decline in fitness. With other things being equal, individuals
will avoid choosing a patch with high resource input if the local population becomes
high, and might opt for a patch with lower K as long as n is significantly lower there.
This assumption has been further extended, to include the possibility of interference
in foraging activities (Sutherland 1983) and the potential to exercise constraints
in the movement of other individuals (i.e. ideal despotic distribution; Fretwell and
Lucas 1970). Some of these models have also been applied to predict colonisation
sequence and settlement history (Kennett et al. 2006; Winterhalder et al. 2010).

One of the key implications of IFD is that aggregation is an indirect consequence
of resource distributions. Individuals are “pushed” together, attracted by the pres-
ence of richer habitats. Thus a convex settlement pattern should be expected for
a landscape with a homogenous distribution of resources while a more primate
distribution should result from a heterogeneous setting.

The “push” argument underpinning IFD becomes problematic if one considers
the benefits that can potentially derive from aggregation alone. This, in fact,
opens to the possibility that individuals might be also “pulled” by the presence of
other individuals. Examples of such a positive frequency dependence arising from
group formation have been exhaustively discussed in anthropology and ecology,
ranging from the benefit of mutual protection (Gould and Yellen 1987) to the
possibility of cooperation and more complex organisation of tasks (Hawkes 1992).
The presence of these positive frequency dependencies at small population density
coupled with negative frequency dependencies at larger sizes is often referred to
as the Allee effect in ecology (Allee 1951). The implications of such a non-linear
relationship are crucial, and can often lead to unexpected macro-level dynamics. For
example, Greene and Stamps (2001) showed how the integration of Allee effect to
standard IFD models can lead to the emergence of population clusters that cannot
be explained by properties of the resource distribution. Although not explicitly
referring to the Allee effect, several authors (Sibly 1983; Clark and Mangel 1986;
Giraldeau and Caraco 2000) have also explored the consequences of this non-linear
relationship, suggesting, for example, how the expected group size is not necessarily
the one in which fitness is maximised (the “optimal group size”), but the one in
which this becomes equivalent to the fitness expected by the smallest possible group
(the “equilibrium group size”).

There are several further assumptions that we need to incorporate in to our
model. The foremost is the role of time and, consequently, aspects pertaining
inheritance and path dependence in the system of interest (Premo 2010). The Allee
effect implies that the attractiveness of a group will dynamically change depending
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on the decision of other individuals. Small differences emerging from stochastic
components in the system could induce migration flows towards a given group,
increasing the fitness of its members, and hence provoking a positive feedback
loop. In the long term, however, this process is expected to promote the opposite
behaviour, as once optimal group size is reached, fitness will start to decline and
individuals will do better leaving the group. As a corollary to this, we also need to
consider that fitness will directly affect the long-term behaviour of the system in
terms of variation in the intrinsic growth rate.

Similarly, we need to take into account that Eq. (8.2) considers K as parameter
constant, and hence invariable over time and by the activities of the local population.
The standard IFD model assumes that resources are instantaneously regenerating
and hence the abandonment of a patch (and the consequent decline in n) will
lead immediately to an increase in the fitness of the individuals who remain
there. Externally induced changes in the resource input could tilt the equilibrium
of a system, and similarly a reciprocal feedback process between resources and
individuals (e.g. K varying over time as a function of n in the past) can lead the
system to different equilibria.

Lastly, the level of integration between sub-components of the system (individ-
uals, groups, etc.) should be considered. The non-linear relationship between group
size and fitness has been primarily explored without considering the implications
of multiple groups co-existing in the landscape. Once we add this to the model
(e.g. Greene and Stamps 2001), the dynamics will be partly affected by the level of
integration between communities, measurable in terms of physical constraints in the
movement (i.e. the cost associated in moving from one place to another, frequency
of movement, etc.) and knowledge (i.e. where to go).

8.3 Model Design

We can formalise and extend the three assumptions listed in Sect. 8.1 by generating
an agent-based model that embraces the theoretical framework discussed so far.

8.3.1 Basic Model

Consider a population of n agents dispersed in a toroidal landscape composed by P
patches. We define a group as a subset of the population of agents located in the same
patch. The maximum number of groups will thus be P , and each group j will have a
size gj , defined as the number of agents located in the same patch j . The simulation
will proceed through a sequence of discrete time steps t D 1; 2; 3; : : : ; T where
the distribution Gt D gjD1; g2; g3; : : : ; gP will be updated by two key processes:
intrinsic population growth/decline of each group (i.e. reproduction and death), and
the movement of the agents. Notice that Gt will be essentially equivalent to the
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settlement-size distribution at given moment in time t , and hence can be quantified
in terms of rank-size. Here, we chose to use the A-coefficient (Drennan and Peterson
2004) described earlier for its flexibility in describing a wider range of patterns.
Thus, for each run of the simulation we generate a time series At describing the
rank-size dynamics of the system.

The core component of the model, which affects both key processes, is the
computation of the agent’s fitness !. This will be executed in two steps. First the
“demand” "i of each agent i will be computed as a random draw from a normal
distribution with mean # C .g ! 1/b and standard deviation ", where # is the basic
fitness (i.e. the expected yield without cooperation), b is the benefit derived from
cooperation, g is the local population density (i.e. the group size), and " is the
stochastic effect of foraging tasks. With other things being equal, "i will increase
linearly with increasing group size. The Allee effect will be introduced in the second
step of the fitness evaluation with the following equation:

! D
( Pg

i "i
g

if
Pg

i "i < K
K
g

if
Pg

i "i " K
(8.3)

where K is the amount of resource available at the local patch.
The relationship between individual fitness and group size could be poten-

tially modelled in several ways (see Clark and Mangel 1986 for other plausible
models), but Eq. (8.3) encapsulates some of the core assumptions regarding human
aggregations:

• Grouping provides benefits in the per-capita fitness;
• Some of these benefits will decline in their effect with increasing group size;
• With a further increase in group size, negative and detrimental forces will become

predominant, with a resulting decline in the per-capita fitness.

These three points characterise the Allee effect described in Sect. 8.2. Here,
increasing b will determine a higher average mean per-capita fitness, as long as
the total “demand” (sum of all ") of the group does not exceed the available amount
of resources K. In such a case, the positive effect of cooperation will no longer be
sufficient, ultimately leading to a decline in fitness (!).

This non-linear relationship becomes a key element once we explore the two
sets of processes that modify group sizes: variation in the intrinsic growth rate and
movement of the agents. For the former case, we can translate fitness into a net
growth rate, defined as the difference between the probability of reproduction (r)
and death (d ). We can formalise this as follows:

r D $
!

#
(8.4)

d D .1C e!!1!!2/!1 (8.5)
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Table 8.1 Fission-fusion conditions and agents’ decision-making

Condition 1 Condition 2 Decision

gi > 1ANDgw > 1 !i ! " " c AND Œ!w ! " " c OR !i # !w# Fission
!w > " " c AND Œ!i ! !w " c OR !i ! " " c# Migration

gi > 1ANDgw D 1 !i < " " c OR !i < !w " c Fission
gi D 1ANDgw > 1 !i ! !w " c Migration
gi D 1ANDgw D 1 !i < " > !w Fission
gi > 1ANDgw D NULL !i ! " " c Fission

For all other conditions, the agent stays in the patch where it is currently located; FissionD the
agent leaves the group and form a new group with size 1, as long as an empty patch is available
within distance h; MigrationD the agent joins the group of the model agent w; FusionD the focal
and model agent form a group of size 2

Equation (8.4) establishes a linear increase in the reproductive rate of the agents
(controlled by $), while Eq. (8.5) has a sigmoidal shape with a small probability of
death at high values of !, and an exponential increase of mortality at lower values
(cf. Pelletier et al. 1993).

The movement of each agent is assumed to be driven by a mixture of “melior-
ising” and “satisficing” principles (Mithen 1990), where the key element for
evaluation is the “perceived” difference in the observed fitness. The model will
produce fission and fusion dynamics based on the following algorithm, triggered
with frequency z:

1. A focal agent i defines a pool of observed agents S as a random sample of
proportion k of agents located within distance h from i .

2. The agent with the highest fitness among the pool S will be defined as the model
agent w. If S is an empty set, there will be no model agent.

3. The focal agent i will compare its own group size (gi ) and fitness (!i ) with:
the model agent group size (gw), the model agent fitness (!w), and the basic
fitness ("). The comparison will be calibrated by a threshold of evidence c
(Henrich 2001), representing the propensity of the agent to be conservative
(high c) or not (low c).

4. As a result of this comparison the agent will decide to stay in the current group,
join another group, or form a new group on its own (see Table 8.1).

8.3.2 Integrating Disturbance

The model presented so far is primarily defined by parameters that describe the
behaviour of the agents. The only exception is the resource input size K, a state
variable of the patches where the groups are located, and hence independent to the
agents. Thus if we want to explore the intrinsic properties of the system we can
assume K as a constant and invariable parameter. This can provide a benchmark
model (scenario 0), where we can identify the key properties of the system in a
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controlled condition where the dynamics are exclusively the consequence of the
agents’ behaviour. Subsequently, we can relax this assumption, and explore the
effects of disturbance, i.e. variation of K, under the following four scenarios.

The first (scenario 1) explores the effect of spatial heterogeneity by adding to the
initial homogenous distribution of K a random integer with mean 0 and variance v.
Increasing values of v will increase the heterogeneity of the resource distribution,
maintaining, on average, the total productivity (the sum of all K of all cells) of the
system constant. The benchmark model (scenario 0) can be regarded as a special
case of this scenario where v is equal to 0.

The second scenario (scenario 2) will relax the assumption of the temporal
homogeneity, allowing K to be time-variant. This will be modelled as a bounded
random walk, iterating the same algorithm used for scenario 1 for each time-
step in the simulation, again parameterised by v. To avoid excessively high or
low values of K, the process will be “bounded” between Klo and Khi . High
values of v will generate abrupt shifts, while lower values will lead to gradual
changes in the resource availability. The third scenario (scenario 3) will combine
the assumptions of scenarios 1 and 2, allowing the resource input of each patch to
have an independent bounded time-series of K.

In contrast to the models of disturbance proposed so far, the last scenario
(scenario 4) shapes the spatio-temporal variation of K as a result of a predator-
prey relationship with the agents. The assumption in this case is that high local
population density should, in the long term, determine a degradation of the local
environment and a decline in resource productivity. This differs somewhat from the
detrimental role of overexploitation portrayed in Eq. (8.1), as the effect will be also
time-dependent (i.e. a group might experience a long-term decline in fitness even
if g is hold constant). The predator-prey relationship can be formalised with the
following pair of equations:

! D
(Pg

i "i if
Pg

i "i ! Kt!1.1 " ˇ/

Kt!1.1 " ˇ/ if
Pg

i "i > Kt!1.1 " ˇ/
(8.6)

Kt D .Kt!1 " !/C #.Kt!1 " !/

!
1 " Kt!1 " !

$

"
(8.7)

Equation (8.6) defines the cumulative gain ! of the agents—which becomes
the individual fitness once its divided by the group size—and is subtracted from
the resource input in Eq. (8.7), a variant of the Verhulst equation (Verhulst 1838),
defined by an intrinsic growth rate # and a carrying capacity $. Equation (8.7) thus
ensures that K is modelled as a population affected by the consumption rate ! of
the agents. The parameter ˇ in Eq. (8.6) models the resilience of the resource pool:
high values will determine an under-consumption of the agents (i.e. the agent will
not be able to identify and consume all resources located on a given patch), while
low values will increase the likelihood of complete resource depletion.
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8.4 Results

The simulation code was written in R statistical computing language (R Core Team
2013) and is available under request. All experiments have been conducted using
UCL Legion High Performance Cluster. A wider exploration of the parameter space
for the benchmark model (scenario 0) is extensively discussed elsewhere (Crema
2014). Here we purposely sweep only the key parameters that have been previously
identified as those1 determining the largest variation in the system behaviour: the
spatial range of interaction h; the frequency of decision-making z; and the sample
proportion of the observed agents k. We additionally sweep three values for relevant
parameters describing different disturbance processes (v for scenarios 1, 2 and 3, and
ˇ for scenario 4). In this case, the choice of parameter values has been dictated by
preliminary explorations of the model in a simplified environment with a single
group (P = 1), where the effect of movement has been excluded. This exercise
allowed the detection of a key range of values covering the widest spectrum of
behaviours in the simplified model. For example, a small variation of ˇ from 0.3
to 0.4 was sufficient to cover the phase transition between three equilibria in a
single group model: extinction (Fig. 8.1a), limit-cycle (Fig. 8.1b), and sustainable
population (Fig. 8.1c). Similarly, the values of v for scenarios 2 and 3 were selected
by observing the proportion of runs where the single group was extinct after 500
time-steps. This helped providing a rough proxy for defining light (v D 9, 0.2
extinction rate), intermediate (v D 16, 0.5 extinction rate) and severe (v D 37,
0.9 extinction rate) disturbance processes (see Fig. 8.1e).

The resulting parameter space (see Table 8.2) has four dimensions and 34
coordinates. For each unique parameter combination, the simulation has been
computed 100 times with 500 time steps each. Given that the primary focus of the
simulation is to establish the equilibrium properties of the system, the first 200 time-
steps have been discarded from the analysis as a “burn-in” stage.

The results of the simulation exercise can be illustrated using a scatter-plot
of At against AtC1. This data representation can help identify whether the rank-
size pattern is stable (point attractor), oscillates between two extremes (limit cycle
attractor) or fluctuates chaotically (strange attractor; see McGlade 1995 for a
detailed discussion on attractors and their relevance in archaeology), and shows,
at the same time, the observed range of variation as well as the frequency and the
magnitude of changes (see Fig. 8.2).

1The parameters defining reproduction (!), death (!1 and !2), cooperation (b), and threshold of
evidence (c) can be all aggregated into different types of relationship between key group sizes and
net-growth rate. Crema (2013b) showed that the dynamics were significantly different only when
the net-growth rate was extremely low and equivalent to zero at the equilibrium group size (i.e. the
value of g satisfying the conditions ".g/ D ".1/ and g > 1). The parameter values chosen for
this chapter determines a net growth rate which remains positive above this size.



170 E.R. Crema

a b c

d e f

Fig. 8.1 Preliminary exploration of the simulation model. The upper row (a–c) depicts three
sets of ten time-series of population change with the effects of different parameter settings of ˇ
((a): ˇ D 0:3; (b): ˇ D 0:35; (c): ˇ D 0:4). The lower row shows the proportion of runs with
extinction (among 1,000 simulation runs) for different settings of v and three distinct values of Klo

((d): Klo D 0; (e): Klo D 10; (f): Klo D 20; in all cases Khi was set to 400). In all cases the
experiments have been conducted using a single patch world, with the settings listed in Table 8.2

8.4.1 Benchmark Model and Spatial Heterogeneity
(Scenarios 0 and 1)

Figure 8.3 shows the parameter space for scenarios 0 and 1. The primary axis
of variation in the system behaviour is along an increasing frequency of decision
making (z), higher knowledge (k), and wider range of interaction (h), while the
effects of increasing heterogeneity of the resource distribution (v) appears to have
almost no effect. When z, k, and h have their smallest values, the system is highly
disconnected, and the agents distribute themselves to local optima (the best patch
around their neighbourhood) leading to the formation of stable convex systems.

The spatial range of interaction plays a pivotal role in this scenario, as increasing
values of any of the other three parameters do not affect alone the broad properties
of the system (i.e. the type of attractor), expect for larger fluctuations of A around
smaller mean values. Once the spatial range of interaction is increased (h ! 3), the
implications of the other three parameters become evident in the scatterplots. Agents
can now move freely in the landscape and hence the effects of their movement
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Table 8.2 List of parameters and values

Symbol Name Values

P Number of patches (cells) 100
! Basic fitness 10
b Benefit of cooperation 0.5
" Basic payoff variance 1
" Basic reproductive rate 0.05
!1 Death parameter 1 1.2
!2 Death parameter 2 5
z Frequency of decision-making 0.1, 0.5, 1.0
h Spatial range of interaction 1, 3, 10
k Sample proportion of observed agents 10!8, 0.5, 1.0
c Threshold of evidence 3
K Resource input 200
vS Stochastic disturbance parameter (scenario 1) 0, 10, 50
vT Stochastic disturbance parameter (scenario 2 and 3) 9, 16, 37
Klo Lowest possible K 10
Khi Highest possible K 400
# Intrinsic growth rate of K 2
$ Carrying capacity of K 200
ˇ Resource resilience to predation (scenario 4) 0.3, 0.35, 0.4

propagate at larger scales, rather than being absorbed locally. As a consequence
of this, we can identify an increase in the possible range of values for A and the
occasional appearance of primate systems (A < 0). However, in most cases these
highly hierarchical settlement systems are unstable, as suggested by the smaller
density of points in the lower-left quadrants (see h ! 3, k ! 0:5, z D 0:5 in
Fig. 8.3).

When the frequency of decision-making is set at its maximum (z D 1), the range
of spatial interaction is sufficiently high (h ! 3) and the sample proportion of
observed agents (k) is equal or larger than 0.5, the system exhibits a limit cycle
attractor. The scatterplot also shows how the patterns of these limit cycles are
affected by the spatial range of interaction, with h D 3 showing more gradual
transition between primate and convex pattern, and h D 100 characterised by
rapid shifts (compare with Fig. 8.2). This cyclical dynamic is derived from the
high convergence in the tempo of the decision-making (i.e. all agents move at
the same time) and the destination of the migration flow (i.e. all agents move
to the same place). Slightly optimal groups are rapidly identified and invaded,
triggering a positive feedback, which promotes further migration. This becomes
soon unsustainable, and once the destination group becomes too large and fitness
starts to decline fission events reset the cycle.



172 E.R. Crema

Fig. 8.2 Phase-space scatter plots for different types of time-series (attractors) of A

8.4.2 Temporal and Spatio-Temporal Disturbance
(Scenario 2 and Scenario 3)

The pivotal role played by the level of integration between groups is still evident
when we add time-varying forms of disturbance processes. Figure 8.4, which depicts
the parameter space for scenario 2, shows in fact that low levels of k, z, and h lead to
convex point attractors, while their increase determine the emergence of continuous
shifts in the rank-size distribution. Details on these shifts are contingent to the time-
series of K of individual runs, but we can still identify general trends of regularity
(e.g. in z ! 0:5, k ! 0:5, h ! 3), suggested by the higher density of points along
the diagonal (see also Fig. 8.2).

When the frequency of decision-making (z) is at its highest value (i.e. the agents
respond immediately to the perceived variation in fitness) and the spatial range of
interaction (h) is equal or greater than 3, we can observe a limit-cycle attractor
with relatively few irregular sudden shifts (lower density of points in the top-left
and bottom-right quadrants). However, when z D 0:5, the number of unexpected



8 Modelling Settlement Rank-Size Fluctuations 173

Fig. 8.3 Parameter-space for Scenarios 0 and 1. The x and y axes represent At and AtC1 and range
from !1 to C1

changes in the rank-size distribution is much higher, and the system can be classified
as a hybrid between limit-cycle and strange attractor. This is most likely explained
by a slower response rate of the agents, which are forced to face the consequence
of decline (or increase) in K before their relocation. Recall in fact that in the basic,
disturbance-free model the system already exhibits high frequency shifts between
primate and convex distributions at the highest values of h and z. Hence, within
these regions of the parameter space, the disturbance process has a marginal role
as the basic dynamics of the system occur at a faster rate. In other words agents
relocate themselves before perceiving the consequences of the disturbance events.
Conversely, when the response rate is slower (z D 0:5), the agents are affected
by changes in K. Variations in the abruptness of these disturbance events (v) do
not seem to play a significant role other than minor variations in the dispersion of
the scatter points: the smallest variation in the availability of resources (K) can be
sufficient to induce a cascade effect into the system.
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Fig. 8.4 Parameter-space for Scenario 2. The x and y axes represent At and AtC1 and range from
!1 to C1

Scenario 3 (Fig. 8.5), which combines both the assumption of spatial hetero-
geneity and temporal changes of K, shows similar patterns. Once again the largest
variation of the phase-space scatter plot can be observed along the axes defined
by h, z, and k. This time, however, increasing values of v exhibit a diagonal “tail”
in regions of the parameter space that are characterised by point-attractors in the
benchmark model. Observation of individual runs indicates that these pattern are
generated from the slow recovery of the system towards highly convex distributions
after episodes of sudden decline in A caused by disturbance events. As for
scenario 2, the effect of disturbance is tangible mostly for intermediate levels of z,
where we can observe increasing episodes of deviations from convex systems with
larger values of h and a transition from a “noisy” point attractors to a hybrid between
limit cycle and strange attractors. When z is at its highest, the frequency of decision-
making is higher than the frequency of disturbance events, leading to a general
pattern similar to the benchmark model.
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Fig. 8.5 Parameter-space for Scenario 3. The x and y axes represent At and AtC1 and range from
!1 to C1

8.4.3 Predator-Prey Model (Scenario 4)

Figure 8.6 illustrates the parameter space for scenario 4, where the amount of
resource input K at a given patch is defined by a predator-prey relationship with
the group of agents located there. Although this time disturbance can be regarded as
endogenous (contra-posed to the exogenous disturbance events of scenarios 1–3),
the basic properties of the system remains the same: high levels of h, z, and k still
lead to stronger and more frequent variations in the rank size distribution.

The most relevant difference with the other scenarios is how the parameter
defining the disturbance process (i.e. the resilience of the resource population ˇ)
appears to have a stronger influence in the simulation output. When this is set to
the lowest value explored in this series of experiment (ˇ D 0:3), we observe a
larger dispersion of the phase-space scatter plot, often leading to the emergence
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Fig. 8.6 Parameter-space for Scenario 4. The x and y axes represent At and AtC1 and range from
!1 to C1

of limit-cycles even when the frequency of decision making is at its lowest. This
is the consequence of the ecological inheritance modelled by Eq. (8.7): agents
will be subject to a decline in fitness even when there is no internal growth or
migration flows. However, if the sample proportion of the observed agents and
the spatial range of interaction are also low we still observe exclusively convex
point-attractors, confirming once again that the level of integration still plays a
pivotal role in explaining the temporal variation in the settlement pattern. When
the frequency of decision making is set at its maximum, variations in ˇ do not seem
to affect the properties of the system, although the scatter plots appear to be in all
cases characterised by a larger number of points outside the main diagonal. As for
scenarios 2 and 3 this can be explained by the high response rate of the agents
who most likely react to the decline in fitness caused by short-term episodes of
overcrowding, rather than actual declines in K.
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8.5 Conclusions

This study proposed a model of the emergence and transformation of human
settlement pattern by combining a series of assumptions drawn from evolutionary
ecology. The two objectives of the simulation exercise were to identify the equi-
librium properties of the system in a disturbance-free context (scenario 0), and
subsequently explore how four types of perturbations (scenarios 1–4) can affect
these. We can summarise the main outcomes of the first objective as follows:

• Convex systems can sustain stable equilibria as long as the level of system
connectivity is relatively low;

• Primate systems emerge only temporarily, either as part of a limit-cycle equilib-
rium, or as a short-term transition from a convex equilibrium. In either case, they
require some level of system connectivity, defined here by the spatial range of
interaction (h), the frequency of decision-making (z), and the sample proportion
of observed neighbour agents (k);

• More generally, increasing connectivity determines an increase in the instability
of the system, from a narrowly confined convex point attractor to high frequency
oscillations between primate and convex systems, with intermediate states
characterised by either point attractors with frequent “escapes” or by more
gradual shifts between opposite values of A.

When the system is characterised by low levels of connectivity, individual groups
are trapped within local optima while being spatially isolated from each other.
Variations in group size will be primarily driven by intrinsic growth rate, as inter-
group movement of the agents becomes rare. Interestingly, spatial heterogeneity
in the resource distribution (scenario 1) does not affect the dynamics of the
system, as agents rapidly find the most suitable locations to settle in the first
few runs of the simulation. Once we allow a larger range of interaction, groups
become less isolated from each other. This means that small variations in fitness
(determined by stochastic components in the model) are amplified by subsequent
inter-group migrations. We can conceptualise this with a simple thought experiment.
Consider two communities A and B with the same group size. Small differences
in the individual yields and random occurrence of reproduction will determine a
divergence in their sizes and hence fitness in the short term. Thus, members of
A might have a slightly higher fitness than members of B. In the long-term these
differences will vanish, but if any individual of B moves to A, this difference will
be amplified. Group A will have higher fitness and hence higher chance to further
increase its size through reproduction, while members of B will be more attracted
by A. If we extend this to a larger number of groups, these dynamics will be further
enhanced. As long as the frequency of decision-making is sufficiently high these
small variations in the systems will be “detected”, and when the spatial range of
interaction and the sample proportion of observed agents are both high, chances of
agents sharing the same destination becomes increasingly high. This will have a
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cascade effect, with the sudden appearance of large nucleated settlements (primate
systems). These are however highly unstable, and hence their formation will be
followed by fission events, which reset and drive the cyclical behaviour of the
system.

The low resilience of primate systems is perhaps counter-intuitive, given that
in many real-world contexts we can frequently observe these patterns with some
degree of stability over time. We should however note that the model proposed here
does not allow any form of innovation, and hence the structural properties of the
system (defined by the model parameters) remain fixed. This is not the case in many
real-world contexts, where the exploitation of novel resources and the adoption of
new technology are often enhanced by higher population density (Powell et al.
2009; Lake and Crema 2012). These innovations can easily modify the shape of
the fitness curve, allowing for the ability to overcome the problem of declining
fitness for larger groups. Furthermore, warfare and direct competitions of resources
between different groups can also help in maintaining large nucleated settlements
at the expense of others, further allowing the system to prolong primate rank-size
patterns. Nevertheless, other studies have demonstrated how these settlements are
still destined to collapse or fission in the long-term (Turchin 2003; Griffin 2011), and
even when a hierarchical system conserves its shape at the macro-scale, individual
communities might be affected by turn-overs, continuously changing their ranks
(Batty 2006).

Disturbance processes have a major role when the system is characterised by
intermediate levels of connectedness. However, the most relevant conclusion here
is that they act as a catalyst rather than being the fundamental cause of shifts in
the rank-size distribution. If the necessary preconditions, such as high frequency of
decision-making or large spatial range of interaction, do not exist, the system will
be almost identical to the expected behaviour in a disturbance-free context. Instead,
when these preconditions are met, we can observe a larger number of sudden
changes in the rank-size distribution in the form of strange and limit-cycle attractors.
However, when the spatial range of interaction, the frequency of decision-making
and the sample proportion of observed agents are all low, convex point attractors are
minimally affected. Exceptions to this occur only when the abruptness of changes in
K is high (e.g. high values of v in scenario 3), but the system will still tend to revert
to high values of A in the long term. Similarly, at the opposite end of the parameter
space (i.e. when z, h, and k are all high), the benchmark and the disturbance models
are almost identical, with only some minor differences observable for scenario 4.
This is explained by high rates of settlement reorganisation that, within these regions
of the parameter space, would occur regardless of disturbance events.

These conclusions enable us to build a template to which empirical archaeolog-
ical data can be compared. The abstract nature of the model does not allow us to
have precise predictions on the parameters for specific contexts, but, nonetheless,
identifying different proxies on the connectivity of the system could provide some
clues on why a given rank-sized distribution emerged or changed over time. Thus,
one should expect that a rugged landscape might favour the isolation between
different communities compared to a plain region, and quantify such an expectation
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using models of movement based on GIS-led analysis (Conolly and Lake 2006;
Bevan 2011) or more complex methods based on circuit-scape theory (McRae
et al. 2008). Other proxies for evaluating the degree of system integration include
the formal assessment of patterns of cultural similarity or dissimilarity between
different communities. Both empirical (Lipo et al. 1997; Shennan and Bentley
2008) and theoretical works (Premo and Scholnick 2011; Crema et al. 2014) have
shown great potential for these studies for investigating the strength and variations
of regional interaction. Bevan and Wilson (2013) provide a recent example on
how these assumptions can also be integrated into realistic models of settlement
evolution, allowing for the possibility to directly compare observed data with model
predictions.

While these research directions are strongly encouraged, it is also crucial that
the underpinning theories of these models are dissected first in artificial and abstract
environments where we have full control of each variable. We still need to fully
examine the consequences of our theoretical assumptions, before proceeding in
applying these models to comprehend real-world changes in human settlement
pattern. This chapter is a contribution to such an endeavour.
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