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Abstract Archaeological analyses often detect abrupt changes over time in the
hierarchy of settlement sizes and the spatial distribution of residential units. These
transformations have been explained looking at a variety of possible causes, from
climatic changes to the sudden release of slowly cumulating political tensions. While
many of these models offer plausible explanations for specific historical contexts, a
broad-breadth model is desirable if cross-cultural analysis is sought. This paper
tackles this problem by starting from the theoretical proposition that human groups
are characterised by a non-linear relationship between size and per-capita fitness.
Increasing group size has beneficial effects, but once a certain threshold is exceeded,
negative frequency dependence will start to predominate leading to a decline in the
per-capita fitness. Such a relationship can potentially have long-term implications in
the spatial structure of human settlements if individuals have the possibility to modify
their fitness through group fission—fusion dynamics. I will illustrate the equilibrium
properties of these dynamics by means of an abstract agent-based simulation and
discuss its implication for understanding long-term changes in human settlement
pattern. Results suggest that changes in settlement pattern can originate from internal
dynamics alone if the system is highly integrated and interconnected.

Keywords Settlement pattern - Fission—fusion - Agent-based model - Rank—size
analysis

Introduction

Settlement patterns are one of the most tangible footprints of human culture on our planet.

Vast regions of the world are covered by intricate patterns of residential features, emerging
from aggregate, historical, and in many cases unintended outcomes of individual
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decision-making. These patterns change continuously, driven by forces originating from
within the system and disturbance processes from outside.

Archaeologists have a unique perspective of these episodes of settlement change. We
see patterns unfolding, spatial configurations emerging in the landscape, and then
vanishing over time. Yet, this vision is partially impaired by a relatively poor empirical
record, a series of deteriorated and blurry snapshots (Dewar and McBride 1992), which
we often need to interpolate with narratives drawn from ethnographic analogies and
modern geography. Computer simulation provides a robust and quantitative alternative
for conducting this exercise. We can infer possible underlying processes deductively,
combining assumptions drawn from the anthropological and ecological literature and
formally linking individual behaviour to its aggregate outcomes.

This paper seeks to contribute to this overarching research agenda by focusing on
the long-term fluctuations of settlement rank—size distribution. Several authors have
identified multiple hypotheses behind different shapes in empirically observed rank—
size patterns. For example, a relatively uniform distribution of settlement sizes have
often been associated with central place theory or assumed to be the consequence of
territorial isolation with low levels of system integration; on the other hand, highly
hierarchical patterns have been explained with the concentration of key resources or
low-cost labor in few core locations (Johnson 1980; Savage 1997). Evidence of shifts
between these two extremes have been identified amongst pre-Columbian sites in
Peru (Drennan and Peterson 2004), Mesoamerican early complex polities (Carballo
and Pluckhahn 2007; Griffin 2011), early farming villages in Southwestern Colorado
(Kohler and Varien 2010) and prehistoric complex hunter—gatherers in Japan (Crema,
2013c). Although the cultural, political and economic context differ substantially
between these case studies, they all share some similarities in their historical trajec-
tories, with structurally akin settlement pattern and hierarchy often remerging multi-
ple times. The settlement history of Jomon hunter—gatherers of Japan is perhaps the
most striking example, with an almost regular cycle of alternation between periods of
strong nucleation and dispersion (Crema, 2013c).

These archaeological evidence lead us to ask whether the re-emergence of similar
spatial configurations in the long-term is the result of similar external forces
reoccurring multiple times (e.g. climatic changes to Bond cycles; Bond et al.
1997), or is rather result from forces accumulating internally in the system itself,
and emerging as periodic episodes of self-reorganisation and settlement change.

I will address this question via an abstract model that transcends from the details of
any specific cultural context. This choice allows the development of a simple
heuristic model where universal assumptions inspired from the ecological literature
are combined in silico, without the risk of generating ad hoc complex models that can
be hardly explored exhaustively. The primary goal is to establish whether radical
shifts in the settlement pattern can occur without the aid of external perturbations to
the system and identify conditions that might promote such events.

Spatial Dependency and Group Formation

A useful conceptual framework for investigating any spatial pattern is the distinction
between induced and inherent spatial dependencies (Fortin and Dale 2005). The
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former refers to spatial distributions that are conditional to variables external to the
system of interest (e.g. variations in population density as a consequence of different
levels of resource availability), while the latter refers to intrinsic properties of the
generative process that can be manifest in forms of repulsive (e.g. territorial spacing
between settlements) and attractive forces (e.g. clusters of households committed to
cooperative tasks).

The distinction is clear only in theory, and any real world patterning is a mixture of
different forms of spatial dependencies acting at different spatial scales. Nonetheless,
much of the modern statistics dedicated to point process modelling departs from this
dichotomy in developing tools for assessing empirical spatial distributions (Illian
et al. 2008; Bevan et al. 2013).

We can adopt the same heuristic distinction and question the distribution of
settlement patterns from the perspective of their individual constituents. Induced
and inherent spatial dependencies will affect the decision-making of each individual
(a household, or any other aggregation of individuals sharing the same destiny after a
decision) and the consequent location of individual residential units. The aggregate
effect of these dependencies will ultimately result in a variety of spatial patterns,
between dispersion and nucleation (Roberts 1996). This anthropic landscape can be
examined by measuring the spacing between individual residential units (Crema et al.
2010), the spatial aggregation and segregation of the clusters (i.e. settlements) they
form (Bevan and Connolly 2006) and the size distribution of the settlements
(Drennan and Peterson 2004).

Ecological, anthropological and archaeological theory on group formation have
implicitly emphasised the importance of one form of spatial dependence over another.
Some authors consider the presence of residential clusters as the result of individuals
being “pushed” together, while seeking to be closer to optimal locations in the
landscape, attracted, for example, by a higher density of resources (Horn 1968;
Jochim 1976; Cashdan 1992); others focus on the beneficial effect of the grouping
itself, hence theorising that individuals are “pulled” by the presence of other individ-
uals (Clark and Mangel 1986; Halstead and O'Shea 1989; Hawkes 1992).

One of the most popular examples of the “push” argument is the Ideal Free
Distribution (IFD; Fretwell and Lucas 1970; for archaeological applications, see
Kennett et al. 2006; Winterhalder et al. 2010). Although different variants of the model
have been proposed (e.g. Ideal Despotic Distribution, Meller 1995), the basic principle of
the IFD suggests that, given full knowledge of the resource productivity and no
constraints in the movement, the distribution of individuals will match the spatial
structure of the resource density. In this equilibrium condition, all individuals will receive
the same payoff, and the relocation of any individual will be detrimental to someone else.
The assumption behind this outcome derives from the commonsensical notion that given
a finite amount of resources, an increase in population density will lead to a decline in the
per capita intake. This negative frequency dependence of individual fitness will lead to a
decline in the attractiveness of locations with high population density.

The standard version of the IFD model does not include any beneficial role for
increase in population density, as individuals will be only “pushed” to locations with
higher resource density. This assumption can be relaxed and integrated with the notion
that individuals might also be attracted by the presence of other individuals (the “pull”
argument). Both theoretical and empirical studies support the idea that an increase in
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group-size provides both positive and negative effects. Examples of the former include
mutual protection and defensibility (Gould and Yellen 1987), risk-sharing (Hawkes
1992), efficiency derived from labour division (Bonner 2004; Jeanson et al. 2007),
increase in information acquisition (Clark and Mangel 1984) and higher rates of cultural
evolution (Henrich 2004; Shennan 2001; but see below). However, the beneficial effects
of these are scale-dependent and, in most cases, destined to decline in oversized groups.
For example, the positive effect of population density to the cumulative rates of cultural
evolution can be expected only for comparatively small-sized population (Vaesen 2012)
while cognitive studies suggest that there are intrinsic limits in the number of human
interactions that our brain can cope with (Dunbar 1993), which, when exceeded, can
lead to psychological stress derived from crowding (Hill and Hawkes 1987). Other
detrimental effects of large groups can include episodes of interference in subsistence
activities (Sutherland 1983), reduced availability of resources (Hamilton et al. 2007),
decreased effectiveness of intra-group communication means (Fletcher 1995) and the
cost of maintaining larger territories (Cashdan 1992).

The studies listed above share the fundamental notion that variations in the individual
fitness will be partly a function of group size. We can formalise this idea introducing a
theoretical per capita fitness function ¢(g), where g is the group size. While the exact
shape of ¢(g) will be unknown in most empirical cases, we can still infer its fundamental
properties by defining critical group sizes that are expected in most scenarios. We might,
therefore, define the existence of the smallest possible group size m (e.g. a single
individual, a household, etc.) and an optimal group size g* where ¢(g) is maximised.
Thus, in the basic version of the IFD model, g* will be equal to m (the optimal group size
is the smallest possible, as fitness will decline with increasing population density), while
if we presume that there is a permanent positive frequency dependence we will have
g*=00. In our case we assume that: (1) both positive and negative frequency dependen-
cies are likely to exist; (2) positive frequency dependence declines as group size
increases; and (3) negative frequency dependence are likely to be the dominant force
in large groups. Several studies in behavioural ecology suggest that a unimodal curve for
o(g), with a single peak at ¢(g*) can satisfy these three assumptions (Sibly 1983; Clark
and Mangel 1986; Giraldeau and Caraco 1993), commonly known as A/lee effect (Allee
1951; Greene and Stamps 2001).

The unimodal version of ¢(g) has interesting properties, especially when there is a
group size g with an expected fitness equivalent to the one with the smallest group size m
(i.e. p(m)=¢(g)). Clark and Mangel (1986: 48) label g as the “equilibrium group size”,
providing the following thought experiment. Consider a group with size g<g* and g>m.
Any individual m will be prone to join such a group, since ¢(m)<¢(g), and the incumbent
members of the group will allow this as long as ¢(g+m)>¢@(g). From the perspective of
the external individual, joining the group remains advantageous even when the target
group is over the optimal size g* and the fitness starts to be smaller than the theoretical
maximum (this will lead to a decline in fitness to the incumbent group members, and a
conflict of interests; cf. Boone 1992). However, once the size of the target group becomes
g, aggregation no longer offers any benefit (as ¢(m)=¢(g), see Fig. 1).

The IFD and the fitness function discussed above are undoubtedly useful heuristic
models, but if we seek to understand long-term settlement dynamics, we should also
consider the effects of: (1) reproduction and death as a function of fitness; (2) group
fission—fusion as a response strategy for modifying fitness; and (3) possible constraints
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Fig. 1 Single humped fitness curve model with critical group sizes

for such movements. We can easily predict that all these three elements can strongly
affect the system. A group might reach a size g>g by internal growth. At this point, being
“alone” is better than being a member of a group of size g (¢(m)>p(g)). This might lead
to a fission process and potentially a subsequent fusion to another group with a higher
expected fitness. However, such a dynamic will be constrained by knowledge (the
individual might not be aware of a group which would provide him/her an increase in
fitness) and space (fission might not be possible if space is not available within a short
distance). To understand these dynamics, we need to construct a model in a flexible
environment where we can easily incorporate these assumptions, without losing the
simple, yet elegant underpinning principles offered by IFD and fitness curve models.

An Abstract Model of Fission and Fusion

Detailed descriptions and computer code of the simulation model can be found on the
Electronic supplementary materials. This section will present an overview of the
general properties of the model, its parameters and variables (see also Table 1).

The spatial environment of the simulation is defined by a series of discrete patches
displaced in a toroidal lattice space. Each patch has a single state variable K,
representing a fixed amount of available resources. Agents represent households (or
any other minimum aggregate unit) and form groups with all agents located in the
same patch. The size g of each group determines the fitness ¢ of its members through
the following two equations.

&=N(m+@g-1'e) (1)
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Table 1 Model parameters, sym-

. 1 Descripti
bols, description and sweep values Symbo eseription Constant and

sweep values

o Number of agents at time-step 0 10

T Total number of time-steps 500

P Total number of patches 100

n Basic individual payoff 10

3 Payoff variance 1

b Cooperation benefit 0.3, 0.5 and 0.8

K Resource Input 200

p Basic reproduction rate 0.05

w9 Death parameter 1 08,10,1.2and 1.4

w, Death parameter 2 5

h Spatial interaction range 1 and 100

z Frequency of decision making 0.1,0.5 and 1
Threshold of evidence 3

k Sample proportion of observed agents 1077, 0.5 and 1

Equation 1 computes the foraging contribution &; of each agent i. This is obtained as a

random draw from a Gaussian probability distribution with mean p; + (g—l)b and a
standard deviation €. The assumption here is that the average contribution of each agent
increases as a function of g, with the parameter b defining the rate of increase. High
values of b (representing the benefit derived from cooperation) will determine higher
rates of increase in &; while € will add stochasticity in the model. Equation 2 models the
effects of negative frequency dependence and the benefits derived from sharing. If the
total sum of all contributions is smaller than the resource input K, individual fitness ¢
will be the average contribution of the group (which will minimise the effect of € with
larger values of g). If the total sum is equal or greater than K, ¢ will be the ratio between
the resource input size and g (all available resources will be equally shared among agents
in the same patch). The combination of these two equations will create a relationship
between group size and fitness with both positive and negative frequency dependencies,
with a single optimal group size g*, and an equilibrium group size g.

The fitness of the agents is the key state variable driving the growth rate of
individual groups (through reproduction and death) and the onset of fission and
fusion events. The former is modelled by translating ¢ into probabilities of death
(d) and reproduction () with the following two equations:

0

r=p— 3
; ()
1

=T e @)

Where p is the basic reproductive rate (i.e. the reproductive rate when the agent is
alone) and w; and w, are shape parameters of the death rate. Equation 3 determines a
linear increase in the probability of reproduction with increasing fitness, while Eq. 4
determines an exponential increase of mortality rate for low fitness.
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All agents have the possibility to improve their condition by means of spatial
relocation (i.e. fission—fusion event). This will occur with a probability z and will be
based on a three-stage process, where each agent observes, evaluates and possibly
imitates other agents (Kennedy 1998). The first step will involve the choice of a
model-agent, that is, the agent w with the highest fitness among a random sample of
proportion & within a grid-distance / from the focal agent (see Fig. 2). Notice that, since
fitness is equal among all members of a group, this process will mimic the selection bias
towards larger, more “visible” groups with higher average fitness. The second step will be
the comparison between the focal agent’s fitness (¢;) the model agent’s fitness (¢,,) and
the expected fitness for individual foraging (1:). This will be calibrated by a “threshold of
evidence” of ¢ (cf. Henrich 2001:994), so that the agent will regard the alternative
strategy superior only if the difference with its own fitness is larger than this value. As
a result of this comparison the focal agent might: (1) fission and leave the current group
and become an individual forager; (2) migrate to another group; (3) create a new group
through a fusion with another individual forager; or (4) do nothing (see Fig. 3).

The simulation proceeds in discrete time-steps t=1,2,3...7, and its initialized with
the creation of n,— agents randomly scattered in the spatial environment, with agents
located on the same patch forming the first groups. At each time-step, the model will
proceed by: (1) calculating the fitness of the agents (Eqs. 1 and 2); (2) reproducing
(Eq. 3) and eliminating (Eq. 4) the agents based on fitness values; (3) moving agents
into different patches if certain conditions are met (Figs. 2 and 3); and (4) recording
relevant statistics about the metapopulation structure.

Rank-size Analysis, Model Implementation and Experiment Design

We can investigate the simulation output by applying the same set of methods that are
conventionally used for the analysis of empirically observed settlement pattern. In the
specific case, we seek to identify the shape of the rank—size distribution and its
evolution over time. We first distinguish between primate and convex settlement
patterns (Johnson 1980; Falconer and Savage 1995; Savage 1997; Drennan and
Peterson 2004). The former can be loosely defined as a highly hierarchical system
where the majority of residential units are concentrated in one or few extremely large-

Step 1 Step 2 Step 3

o]

e .

o
.
o
.
oo

Fig. 2 Agent relocation process. Step 1: a focal agent (white dot) is chosen. Step 2: the focal agent samples
a proportion & of agents within a grid distance /. Step 3: after comparing its own fitness with the fitness of
the best agent among those sampled, the focal agent relocates (see also Fig. 3)

@ Springer



392

Crema

gi ...Focal group size

9w ...Model group size

¢i ...Focal agent fitness
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Fig. 3 Decision tree of agent relocation. At each node (starting from /ef?) state variables are compared, and
the outcome leading to a movement to a subsequent node, until the tips with the final decision is reached

sized settlements. In contrast, a convex settlement pattern is characterised by high
levels of dispersion and a uniform distribution of settlement sizes. Formal distinction
between the two systems can be based on a statistical comparison with the theoretical
Zipf’s law distribution (Zipf 1949): Primate system will have a rank—size plot with a
steeper slope compared with such a null model, while convex systems system will
exhibit the opposite pattern (see Fig. 4).

Drennan and Peterson (2004) provide a useful index for distinguishing primate and
convex systems. Their A-coefficient analysis returns a single index A4 as a
standardised measure of deviation from the theoretical Zip’s law distribution.
Positive values suggest convex patterns, with a maximum of 1, reached when all
settlements have the same size. Negative values will indicate primate patterns,
although, in this case, the minimum can be theoretically smaller than —1. Notice that
A has been calculated only when the observed numbers of groups were equal or
higher than five, an arbitrarily chosen threshold necessary to observe the most
commonly found shapes of rank—size curves (cf. Figure 1 in Savage 1997).

We can obtain time-series of 4 from the simulation outputs, which will describe
the equilibrium properties of the system for each parameter combination. This will
allow us to answer the first research question (i.e. Can transitions between primate
and convex patterns occur in the absence of external disturbance processes?) by
determining whether rank—size distributions are at stable equilibria (i.e. a point
attractor) or are instead characterised by shifts between primate and convex shapes.
In the latter case, we want to determine whether these transitions occur in a periodic
or quasi-periodic fashion (i.e. a limit-cycle attractor or a toroidal attractor), or
behave chaotically, with a complete absence of repeated sequences of 4 (i.e. a strange
attractor; see McGlade 1995 for discussions on the notion of attractors and its
archaeological relevance). Figure 5 shows four examples of attractors with their
respective time-series and scatter plots of 4, against A, ;.
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Fig. 4 Convex, quasi-Zipfian, and Primate patterns, with corresponding rank—size plots and 4 coefficients

The choice of the model parameters is perhaps one of the biggest burdens in
ABMs. Variables with bounded ranges (e.g. between 0 and 1; z, &, and /4 in this case)
can be easily explored by systematic sweeps with predefined interval bins. Variables
with unbounded ranges are harder to choose, and educated guesses are commonly
adopted on the basis of expert knowledge (e.g. Dean et al. 2000; Smith and Choi
2007). When these are not available or not applicable, we need to define parameter
values on the basis of known relationship to other key variables. If we conceptualise a
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Fig. 5 Time-series and phase-space scatterplot for different types of attractors: a point attractor with small
fluctuations at high values of 4; b limit cycle attractor with gradual change between primate and convex
patterns; ¢ limit cycle attractor with sudden shifts between primate and convex patterns; d strange attractor
with chaotic oscillations of 4
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p-dimensional parameter space, where p is the number of parameters, we can expect
that certain patterns are likely to be reoccurring despite different numeric combina-
tions of the parameters. Thus, an ideal exploration strategy is to exploit this structure,
trying to minimize the input information (choice of parameter values), maximising at
the same time the output information (identification of boundaries between different
types of equilibria in the parameter space).

In practical terms, we need to formally define the expected relationship between
parameters and different behaviours of the system. Here, I concentrate on parameters
relevant to the internal growth of each group (reproduction and death) and the fission—
fusion dynamics. We first derive the intrinsic growth rate y as the difference between » and
d defined in Egs. 3 and 4. With other things being equal, a group is expected to increase its
size with positive values of 'y and decrease its size with negative ones. Since y is a function
of g, we can define g as the group size when y=0 (i.e. the zero-growth group size). We
can also derive a fission group size g , as the one satisfying the condition ¢(g) = ¢(g)—c.
Once we have established these two and additional critical group sizes (see Fig. 2), we can
envisage four distinct scenarios: (1) the intrinsic growth rate reaches zero at the equilib-
rium group size (g=9) ; (2) the intrinsic growth rate reaches zero between the equilibrium
group size, and the expected fission size (¢ < g < g) ; (3) the intrinsic growth rate reaches
zero at the fission group size (§=g) ; and (4) the intrinsic growth rate reaches zero above
the fission group size (g>>g) . We can achieve these four scenarios by sweeping only one
of the parameters of Eq. 4 (w;), holding the others (c,p,w,) constant.

Fission—fusion dynamics are triggered primarily by a “meliorising” principle
(Mithen 1990: 31-32): Agents decide to move when an alternative choice (in most
cases adopted by the model agent) is “significantly” better (i.e. the difference is larger
than the threshold of significance c). A key parameter in this case is b, the benefit
derived from aggregation. Recall that increasing values of b will lead to higher rates
of fitness increase as a function of group size, while smaller values will determine
only a marginal improvement compared to individual foraging. Since the difference
in fitness between the focal and model agent and the threshold of evidence ¢ are
ultimately driving the movement of the agents, we can predict the outcome of
different combinations of these two parameters when everything else is held constant.
Figure 6 shows the probability that the difference between the focal agent and model
agent fitness is lower than ¢ for different group sizes and parameter combinations of b
and c. The level plots depict in most cases two areas with high probability, one where
the focal group is oversized (high values of g;) and hence attracted to smaller-sized
group closer to the optimal size (dashed line), and another where the focal group is
sub-optimal and attracted to larger groups closer to the optimal size. This is true for
all parameter combinations, although when the threshold of evidence c is higher, the
probability of small focal groups moving to the model group is high only when b is
also high. Figure 6 suggests that holding ¢ constant to high values and sweeping the
benefit of cooperation b allows us to explore a more diverse range of combinations, in
some where migration comes almost exclusively from oversized-groups (e.g. 5=0.3
and ¢=3 in Fig. 6) and others where members of small-sized suboptimal groups
migrate as well (e.g. 5=0.8 and ¢=3 in Fig. 06).

Table 1 summarises the parameter values used for the experiments. The resulting
parameter space is defined by 5 dimensions and 216 unique points (3 sweeps for z, b,
and k, 2 for &, and 4 for w;). Each combination has been explored computing 100 runs
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Fig. 6 Probability of migration for different parameter combinations of b and c at different combinations of
the focal (g;) and model agent’s (g,,) group sizes

of the model, recoding for each A4,, the A-coefficient value at each time-step #, up to
t=500. The result has been plotted in pairs of four-dimensional plots, showing the
combined time-series of all runs and scatter-plots of 4, against 4, ;. In all cases, the

k=0.0000001 k=0.5 k=1.0
©=08  0=10  o=12  orl4 008 =10 w12 =14 @08 =10 =12 w=14

0.1
0.5

z=
b=

0.5
0.5

1.0

Fig. 7 Time-series parameter space of A4 with h=1. The grey-shaded area is the 95 % envelope of
simulation runs; the solid line is the average A value among the runs, and the red point and dash line
indicates A=0. The y-axes (4) range between —1 and 1, while the x-axes range from /=300 to =500
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first 300 time-steps have been discarded. This was necessary to remove the “burn-in”
phase where the system moved from its initial conditions to its equilibrium state.

Results

Figures 7 and 8 depict the time-series of 4 for the spatially local (A=1) and global (A=
100) variants of the model. In all cases, the local model exhibits a stable equilibrium with
a uniform distribution of group sizes (convex pattern). When the frequency of decision-
making (z) and the proportion of observed agents (k) are both high, and when g>g
(zero-growth size larger than the equilibrium group size; i.e. when w;>1.0), the
equilibrium value of 4 is slightly lower, suggesting small levels of settlement hierarchy.
Nonetheless, the pattern can still be regarded as convex, with 4, being always positive.

When the range of interaction is global (Fig. 8), the parameter space looks rather
different. Stable convex patterns can be now observed only when k and z are set to their
smallest values (with exceptions when w; =0.8, i.e. when the population size is smaller due
to higher mortality rate at smaller group sizes; see Eq. 4, also Crema 2013b). When &
and/or z are set to higher values, the 95 % simulation envelope covers both positive and
negative values of 4, suggesting potential transitions between primate and convex patterns.

The scatter-plots of A, against A,.; can illustrate the nature of these dynamics
(Figures 9 and 10). The high concentration of points in the top-right corner for the
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Fig. 8 Time-series parameter space of 4 with #=100. The grey-shaded area is the 95 % envelope of
simulation runs; the solid line is the average 4 value among the runs, and the red point and dash line
indicates 4=0. The y-axes (4) range between —1 and 1, while the x-axes range from =300 to =500. Notice
that some parameter combinations with low intrinsic growth-rate did not produce a sufficient number of
groups (5) to produce reliable estimates of 4 and hence has been excluded from analysis
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Fig. 9 Phase-space scatterplot parameter space of 4 with 4=1. The y-axes and X-axes range between —1
and 1; the dashed lines are drawn at 4,=0 and 4, ;=0. The point depicts A coefficients in the interval
between =300 and =500

spatially local version of the model (2=1) confirms a stable system at high values of
A. With £>0.5, z=1, and w;>1.0 the points are slightly more dispersed and closer to
the centre of the plot (suggesting fluctuations between different settlement systems
exhibiting higher hierarchy), but the overall behaviour of the system appears to be the
same throughout the parameter space.

Once again, in the spatially global version of the model (Fig. 10), we can observe a
radically different picture. When £ is set to its smallest value, we still observe a high
density of points in the top-right corner, but a diagonal trend suggests that smaller values
of 4 are occasionally observed. A careful look at individual time-series suggests that
these are associated with sporadic transitions to more hierarchical systems, always
followed by a return to the original equilibrium state with high values of 4. These
patterns can be observed when the intrinsic growth rate is comparatively low (w;=0.8).
In these regions of the parameter space, groups are more likely to suffer an increased
mortality after immigration events, and consequently, a higher diversity in the group size
distribution is occasionally expected after fission—fusion dynamics.

When £>0.5, we can identify three different scenarios that can be distinguished on
the basis of the frequency of decision-making. When this has its lowest values (z=
0.1), the point cloud is located exclusively in the top-right quadrant, indicating a
convex pattern (see also Fig. 11a), with fluctuations positively correlated with w;.
When z=0.5, the scatter plot occupies all four quadrants, but the highest density is
still in the top-right corner. This suggests a stable equilibrium with occasional
“escapes” from the main basin of attraction (see also Fig. 11b). In other words, the
system is in most cases convex, but with episodes of sudden shifts from convex to
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Fig. 10 Phase-space scatterplot parameter space of 4 with #=100. The y-axes and X-axes range between
—1 and 1; the dashed lines are drawn at 4,=0 and A, ;=0. The point depicts 4 coefficients in the interval
between r=300 and r=500. Notice that some parameter combinations with low intrinsic growth-rate did not
produce a sufficient number of groups (5) to produce reliable estimates of 4 and hence has been excluded
from analysis

primate and from primate to convex patterns. Finally, when z=1.0, the scatter plots
exhibit a strong diagonal pattern surrounded by lower-density points. This (see also
Fig. 11c and d) suggests the presence of a system fluctuating around different
metapopulation structures, with occasional sudden shifts between primate and convex
patterns. Instances where the diagonal lines are uninterrupted (e.g. when b=0.3) are
indicative of a relative gradual transition between the two systems (Fig 1lc; cf.
Fig. 5b), although the transition from primate to convex is always faster than the
opposite. When 5>0.5, the diagonal is “broken” (cf. Fig. 5¢), indicating more sudden
transitions between high and low values of 4 (Fig. 11d).

Discussion: Dynamics of Metapopulation Change

The exploration of the parameter space allowed us to identify several properties of the
model given the assumptions defined by its parameters. First, stable equilibria are always
convex settlement patterns, a result conforming to the expectations of the ideal free
distribution models. Given a uniform distribution of resources, full knowledge and freedom
of movement, the metapopulation structure will be ultimately characterised by a homog-
enous size distribution “matching” the resource input, hence a convex rank—size pattern.
Relaxing the assumption of a uniform resource distribution might potentially lead
to different equilibria, although this will be heavily dependent on the spatial structure
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Fig. 11 Time-series of 4 for single runs of the simulation: a #=100, k=1, z=0.1, »=0.5, and w;=1.4; b
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of resources. Experiment runs where the resource input of the patches were randomly
drawn from a Gaussian distribution show that convex stable equilibria would still
emerge (Crema 2013a). In these scenarios, fission—fusion events lead groups to reach
patches with the highest resource input within their neighbourhood, and as long as
these local optima have similar absolute values of K, the rank—size distribution is
expected to be convex. Strongly skewed resource distribution or a high overall
population density might instead lead to the emergence of primate systems. In the
former case, local optima are more likely to have different resources in different parts
of the landscape, while in the latter case suboptimal patches are more likely to be
colonised. The number of these alternative scenarios is too high to be discussed here,
but the basic model proposed in this paper could easily integrate these and provide
predictions of long-term settlement equilibria for specific spatial distribution of
resources.

Primate systems could emerge, however, without the presence of a heterogeneous
distribution of resources or the induction of some external disturbance. The explora-
tion of the parameter space has in fact indicated that highly hierarchical systems can
appear when the agents’ movements amplify small pre-existing variations in fitness
between groups (originating from its stochastic components; e.g. € in Eq. 1). When
these are highly interconnected (high values of /) and agents have a high probability
of sharing the perceived optimal choice/destination (high values of k), a group with a
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slightly higher per capita fitness will be immediately invaded, leading to the emer-
gence of a highly hierarchical primate system. When the benefit of cooperation (b) is
high, this process is strongly stimulated (cf. Fig. 6) and determines fast fission—fusion
dynamics, where dominant groups are rapidly invaded and abandoned when they
become suboptimal. In other words, the absence of forces constraining the movement
and the knowledge of the agents (z, £ and /) lead to the emergence of highly unstable
metapopulation structures. This pattern closely resembles the “tragedy of commons”
(Hardin 1968), where the global pursuit for optimality (joining the group with the
“best” size to increase fitness) leads to the emergence of sub-optimality (the “best”
group becomes oversized, and fitness declines).

Conclusion

The idea that endogenous forces are capable to induce radical changes in settlement
patterns is not itself new in archaeology. Previous simulation-based studies in archae-
ology have shown how this is possible for a variety of assumptions (Griffin 2011;
Renfrew and Poston 1979). This paper shares similar conclusions by using a simpler
model that can be generalised to a wider range of societies, transcending from the
details specified in previous works.

The key parameters defining the largest component of the model behaviour are
those related to the mobility of the agents. When agents can move everywhere,
anytime and have perfect knowledge, we expect high rates of changes between
primate and convex systems. Conversely, when agents are spatially constrained,
move less frequently, and have imperfect knowledge we expect a convex system,
as long as the resources are distributed homogenously. This dichotomy has some
parallels with studies on self-organised criticality where patterns of underlying
“tension” determine the frequency and magnitude of catastrophic events (Scheffer
2009). In some cases, these “tensions” might be released locally, with not effects at
the global scale; in others, these might propagate through space, triggering transfor-
mations at the macro level. Similarly, it is worth highlighting that the instability of
highly integrated systems bears some parallelism with recent studies on cultural
evolution which suggests how high levels of knowledge (Lake and Crema 2012)
and foresight (Xue et al. 2011; Wren et al. under review) are often sub-optimal. In our
case, high degrees of knowledge and interconnectivity lead to a cascade of events
where an initial increase in fitness is followed by a decline.

The dynamic nature of highly integrated systems leads also to suggest that a
narrow focus on the dichotomy convex-primate might hinder the relationship be-
tween the generative processes and the archaeologically observed pattern. Pairing
high-level integration with primate systems and low-level integration with convex
systems would incorrectly assume that the expected equilibrium for a given structural
properties of the system is stable and static. In the case of the model presented here,
high-level integration system can be recognised only when the nature of alternation
between convex and primate systems is identified. Thus, empirical patterns should
always be examined taking into consideration that the temporal window of analysis
might be too small to capture the full nature of the generative process behind.
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It is worth reminding also that real-world systems are characterised by levels of
integration that are different from some of the results portrayed by the simulation
exercise. Both instances of absolute isolation or complete integration are highly
unlikely, and intermediate levels should be expected. Nonetheless, the model pre-
sented here can provide the extremes of a spectrum that can be used as a template for
assessing empirical data. The crucial element for validating the model proposed here
is to infer the level of system integration from available archacological and historical
proxies. The spatial range of interaction between communities can be inferred from
the topographic properties of the landscape and how these can isolate or promote
integration based on different models of movement (McRae 2006; McRae et al. 2008;
Bevan 2011), or identified by indirect proxies based on cultural similarity (e.g. by
assessing stylistic features in pottery; see, for example, Shennan and Bentley 2008).
A recent study by Bevan and Wilson (2013) on the settlement hierarchy of Bronze
Age Crete provide some promising directions in this regard. Their model of network
evolution (based on a combination of point process and entropy-maximising interac-
tion models) could be integrated with fission—fusion dynamics, allowing to formally
test the hypotheses generated in this paper using the empirical record.

Finally, it should be noted that the model proposed in this paper has enough
flexibility to incorporate further assumptions on the relationship between metapopu-
lation dynamics, frequency-dependent fitness and resource distribution. These can be
linked to dynamics of cultural transmission (cf. Lake and Crema 2012) processes of
positive and negative niche construction (Odling-Smee et al. 2003) and other evolu-
tionary models that can widen our understanding of long-term settlement-pattern
change.
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