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1. Introduction

While distribution maps are nearly as old as the discipline of archaeology itself,
most archaeologists still rely on personal intuition with regard to their
assessment both of the spatial patterns they recover and the environmental
processes and human behaviours that might be behind these patterns. To some
extent, this general preference for intuitive readings of space in the
archaeological record probably reflects several decades of disillusionment with
quantitative spatial methods, after a flurry of early interest during the 1970s (e.g.
Hodder and Orton 1976; Clarke 1977), and a continuing wish to prioritise the
study of cultural spaces as subjectively experienced and meaningfully
constituted by their human inhabitants (e.g. Gregory and Urry eds. 1985).
Interestingly, even the enthusiastic uptake of Geographic Information Systems
(GIS) from the 1990s onwards did little to change this situation with regard to
spatial pattern analysis, as most off-the-shelf GIS software was targeted at data
management and querying, digital cartography and enhanced visualisation, as
well as certain focused modelling agendas (e.g. terrain, visibility and movement).
Effectively, the study of distribution maps in archaeology merely carried on as it
was, with a healthy dose of expert intuition, and perhaps in slightly richer visual
form.

However, while human involvement in the act of interpretation is undeniably a
crucial and enduring aspect of archaeological research, there remain good
reasons to characterise spatial distributions in more formal, quantitative ways.
This paper focuses on a set of point pattern and process models that, we argue,
now puts archaeologists in a position to return to the analysis of spatial pattern
and process with renewed ambition, especially with regard to distribution maps.
The first section below considers current theoretical approaches to point
distributions and subsequent sections then address three cases studies that
highlight some important conceptual issues and new analytical opportunities.

2. Theoretical Perspectives

2.1 Point-based Simplifications

A dot on a map is usually a considerable simplification. Whether our concern is
about the proper 2- or 3-dimensional representation of a real world entity, its
more complicated expression in space-time, or the possible webs of cultural
meaning that might envelope it, we certainly risk much by this kind of spatial
abstraction. There are also further trade-offs to do with how we record such
points, between time and effort on the one hand, and any possible archaeological
insights we might derive on the other. Do we require great spatial accuracy (such
that measured coordinates are close to the actual absolute values), great spatial



precision (where measurements of a given location are highly reproducible, but
not necessarily accurate) or some combination of the two? Furthermore, points
can also be thought of as highly simplified events in space-time: as such, they
often involve only a fuzzy or very loose sense of duration (how long an event
lasts for) and equivalence (to what extent an entity in one time step can still be
considered the same entity in the next). Indeed, if we observe such events in
traditional blocks of archaeological time (e.g. periods or phases), this lumping
procedure is a further abstraction with its own additional methodological
implications and risks.

An important initial stage of spatial (and spatio-temporal) analysis therefore
involves deciding what kinds of simplification and trade-off are acceptable for
what applications, as well as how best to make use of the information we already
have.

2.1 Spatial Randomness, Regularity and Clustering

Assuming for a moment that point-based abstractions are sometimes justifiable,
what do we then want to say about such spatial distributions? The main formal
question in the past has been the degree to which a distribution departs or not
from what we might expect if we simply scattered points at random across the
study area. The latter random, purely ‘stochastic’, process establishes a
theoretical baseline usually referred to as ‘complete spatial randomness’ or CSR.
Spatial statisticians also tend to assume that the underlying process responsible
for generating this random point pattern operates in roughly the same way
across the whole study area (i.e. it is ‘homogeneous’ and ‘stationary’l), and that if
we were to consider the number of points falling in each of a series of similar
sub-units across this area, we would find that their densities (the more common
technical term is point ‘intensity’, as used hereafter) follow a Poisson
distribution and are said to be a realisation of a spatial Poisson process. Figure
1a depicts an example of a random distribution of points in a rectangular area,
generated according to a Poisson process.
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1In certain contexts, there are differences between these two terms, but for economy in the
discussion below, they are used interchangeably, as are their opposites (inhomogeneity,
heterogeneity and non-stationarity, see below). One related aspect of spatial data that does not
receive any attention here, but which implies a limited form of non-stationarity, is anisotropy (i.e.
situations in which points are found more frequently in certain prevailing directions; see
Markofsky and Bevan 2011 for archaeological discussion).



Figure 1. Hypothetical examples of random, regular and clustered point patterns.

In contrast, Figures 1b-c depict two alternative patterns in which the point
distribution is (b) more ‘regular’ (also often described as ‘dispersed’) or (c) more
‘clustered’ (also often described as ‘clumped’ or ‘aggregated’). Sometimes such
patterns are intuitively obvious and we could get away without using statistics to
consider them, but often our spatial intuition is misleading: for example, some
people would suspect slight clustering in the figure 1a (in fact, it is purely
random), while others might not suspect regularity in figure 1b (in fact, there is
an arbitrarily imposed minimum distance between points). It has therefore long
been acknowledged that the role of quantitative spatial analysis is partly: (a) to
arbitrate in situations where spatial patterns are uncertain, (b) to characterise
such relationships in ways that are useful for explicit comparison, and (c) to offer
a formal platform for suggesting possible processes and behaviours behind such
spatial patterns. In particular, we often assume that, behind any patterns of
regularity or clustering are also some interesting alternative processes, beyond
one that is purely stochastic and Poisson. Regular patterns are often thought to
be the result of ‘inhibition” processes. For example, for human settlements we
might think of the way in which the existence of one settlement might inhibit the
creation of another one immediately next to it (e.g. because of competition over
resources, see below). For artefact distributions, regularity can be generated by
various kinds of post-depositional, taphonomic sorting or due to very deliberate
human decisions about artefact placement. Clustered patterns, in contrast, are
often the result of ‘attraction’ processes. We might think of the movement of
people towards larger settlements because of a variety of the advantages such
aggregated locations might offer. For artefacts, we can think of processes of
discard and subsequent breakage in situ that encourage very clumped scatters of
such finds in the archaeological record.

2.3 Spatial Inhomogeneity

So any point pattern documented across a given study area (of whatever
archaeological size, from one observed under the microscope, to one found on a
house floor, to one seen across a whole landscape) can be thought of as a
realisation or one or more underlying processes (see also O’Sullivan and Unwin
2003: 51-75). In the simplest null case, a single random Poisson process is
involved. In other, still simple cases, a non-random process is at work, but only
one, with effects that are homogeneous across the entire study area (even if the
pattern manifests differently at different spatial scales, see below). However, in
many real world examples, it is likely that multiple processes are at work and/or
that they behave differently in different parts of the study area (i.e. they can be
described as ‘inhomogeneous’, ‘heterogeneous’ and/or ‘non-stationary’; for an
archaeological example with aggregated count data rather than point patterns,
see Bevan and Conolly 2009). Given the prevalence of inhomogeneous
distributions in real life, it is both theoretically and practically useful to
distinguish between the ‘first-order’ and ‘second-order’ characteristics of a given
point pattern (e.g. Bailey and Gatrell 1995: 32-5). First-order characteristics are
those that describe the average intensity of points across a given region (if this
average intensity varies spatially then the point pattern can be called



inhomogeneous), and first-order effects refer to one or more external processes
or phenomena that encourage the intensity of points in the study region to vary
at different locations. In contrast, the second-order characteristics of a point
pattern describe the relative intensity of points as influenced by the spatial
configuration of other points in the study area (i.e. the pattern’s covariance
structure), and reflecting different kinds of internal interaction effects among
points, such as propensities for attraction or inhibition. A basic lesson from
many practical analyses is that it is difficult, and often entirely misleading, to
consider second-order effects before properly accounting for first-order effects.

We return to these issues in the first two case studies below. For now it is simply
worth noting that, we can easily build simulations in which to observe what kind
of spatial pattern is produced by any single realisation of a particular point
process of know design. In real world contexts however, the process that
generated the points is typically unknown, and the challenge becomes the degree
to which we can learn about what the first- and second-order effects might be
solely via analysis of the resulting pattern. Ironically, while it is fair to say that
many archaeologists would be loosely and informally aware of such complex
spatial considerations when it comes to their interpretation of the archaeological
record, the formal quantitative tools they have so far used have been stuck in
some rather idealised and methodologically-quarantined boxes. For example, at
the scale of landscapes and archaeological sites, ‘predictive modelling’ (e.g.
Mehrer and Wescott 2006; Verhagen and Whitley 2011) 2 has been a
commonplace way of assessing first-order properties, demonstrating, for
example, correlations between the probability of discovering sites in a particular
study area and the distribution of one or more environmental variables (e.g. soils,
slope steepness, access to water, etc.). Conversely, nearest neighbour tests and
quadrat counts have typically been used to assess site spacings, with the implicit
assumption that second-order interaction effects are often at work. However,
rarely if ever, are these two methods brought together to treat the issue as an
analytically-related whole.

One final, complicating factor for archaeologists is the fact that archaeological
observations are very partial, imperfect records of past activity. Much of the
variability in our observed spatial patterns in archaeology is due to patchy levels
of archaeological preservation and investigation. For example, most site
distribution maps are the result of historically-complex sites and monuments
records or unsystematic surveys - many of the perceived clusters of
observations are to do with where people have recently looked, where modern
development has recently exposed new archaeology, etc. These issues can also
be conceived of as kinds of first-order variation in intensity, but ideally we would
want to distinguish them from taphonomic and human behavioural effects in the
past, ultimately so that we can offer some useful archaeological interpretation.

3. Multi-scalar and Monte Carlo Approaches

2In archaeology, this term has developed an unnecessarily narrow meaning, related to cultural
resource management and models of site location probabilities. However, beyond archaeology, it
is just a general term for any kind of model that leads to explicit predictions of one kind or
another.



This section moves from general theoretical considerations to explore the
relevance of a variety of recent methods for characterising point patterns and
processes. It begins with a hypothetical example to fix some ideas before
considering a real, intra-site case study.

3.1. A Hypothetical Example

It may sometimes be very difficult to wholly separate complex first- and second-
order effects (some operating in the past, some in the present) in many
archaeological datasets, but there remain many advantages to conceptualising
point distributions this way. Alongside the theoretical issues raised above, a
whole host of more advanced analytical methods have been discussed in the
spatial statistical literature over the last 20-30 years (for a recent overview:
Gelfand et al. 2010: 263-423). These have been used in certain applied fields
such as astronomy or ecology for a long time, but have been slow to percolate
into other disciplines such as archaeology.
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Figure 2. Multi-scalar Monte Carlo methods: (a) a point pattern, in a in a notional 10x10m study
area, that is both regular and clustered at different distances; (b) a pair correlation function
identifying a switch from significant regularity to significant clustering at c.0.25m (with the latter
slowly tailing off thereafter). The grey are in b) is a 95% envelope based on 999 random
simulations.

Two key methodological advances over the last 35 years (outside of
archaeology) have been methods that: (a) deliberately seek to address point
pattern and process at several different spatial scales, and (b) employ a family of
randomisation tests know as Monte Carlo simulation (Robert and Casella 2004),
which leverage the speed of modern computational platforms to provide a
powerful and flexible way of testing spatial patterns, particularly in cases where
the study area is irregular or the underlying effects are complicated (for other
archaeological applications of Monte Carlo simulation, see Fisher et al. 1997;
Drennan and Peterson 2004; Crema et al. 2010). Figure 2a, for example, presents
a toy example of a point pattern produced by a known process (see Lennard-
Jones 1924) in a notional 10x10m study area which leads to (a) a strong
tendency for regular spacing over very short distances (up to 0.25m in this case),
but thereafter also (b) a further tendency for clustering at medium distances
which gradually tails off to a random pattern at larger ones. In this case, no first-
order effects are present and the process operates in a uniform way across the



whole hypothetical study area. To what extent however, can we find methods
that correctly identify these different scales of second-order effect based solely
on analysis of the resulting site distribution? If, for example, we calculate a
traditional nearest neighbour index (Clark and Evans 1954; Hodder and Orton
1976: 38-51) that has been, for better or worse, the bread-and-butter of
archaeological point pattern analysis for many years, it misleadingly suggests
that the pattern is random or only very slightly clustered (r=0.91).

There are however more recent spatial statistical methods that consider multiple
scales of second-order patterning and explore how likely or unlikely they are to
have occurred by chance (for a technical overview, see Gelfand et al. 2010: 263-
423). Perhaps the most common of these is the K function and its more readable,
slightly transformed version, the L function (originally Ripley 1977; and for
some exploratory archaeological uses, Orton 2004; Bevan and Conolly 2006;
Vanzetti et al. 2010). Here we emphasise another related method, the pair
correlation function (PCF), which is less well known, but arguably more useful in
many circumstances (several similar functions go by other: see Ilian et al. 2010:
218-23; Wiegand and Maloney 2004, Perry et al. 2006). A PCF measures the
intensity of points in donut-shaped rings (annuli) around each point and, as such,
is not a cumulative statistic in the same way as a K or L function (the latter two
effectively measure the intensity of points in ever expanding circles that include
all previous, smaller ones).

Figure 2b shows PCF results for the simulated point pattern. The x-axis measures
the separation distance between points and the observed results are presented
as a black line. This observed result begins well below the theoretically random
threshold of y=1, indicating the possible regularity of this pattern at short
distances, then climbs well above this threshold, indicating medium distance
clustering, before dropping slowly back down towards y=1. For a variety of
reasons however, this theoretical y=1 threshold is often an unreliable baseline,
and it is more useful to use Monte Carlo methods that offer an ‘envelope’ of
possible values that we might expect under a null model in which the point
process generating this pattern is assumed to be wholly random. This is done by
repeatedly generating sets of an equivalent number of random points, and then
plotting maximal and minimal PCF values at each distance range. In the case of
figure 2b, the grey shaded area marks out, not the full range of random PCF
values, but an envelope enclosing the middle 95% of PCF values from 999
simulation runs.? Where the real, observed values are larger than this envelope,
the observed pattern can be considered clustered at that distance, whereas
where they fell below the envelope, they are more likely to be regularly spaced.
In this example, the PCF successfully and accurately documents the shift from

3 For simplicity and consistency in each of the analyses developed in this paper, we have run 999
Monte Carlo simulations, have combined these with the observed values and have then taken the
25th and 975t ranked values to define the borders of the envelope depicted in each plot. At first
glance, it might seem as if these envelopes could be treated as also defining a 0.05 significance
level, but in fact this is potentially misleading for tests that consider multiple critical values
simultaneously. Alternative envelope calculations that do produce exact significance envelopes
are feasible (e.g. see ?envelope in the R spatstat package), but are more complicated to
implement consistently across the different methods used here, so they have not been included.



significantly regular to clustered effects (the critical feature in this kind of plots
is usually the point of inflection at about y=1, e.g. here at ca. 0.25m, rather than
the top or bottom of observed humps in the PCF), and thereafter the slow tailing
off of this clustering until the pattern becomes wholly random. In fact, the non-
cumulative nature of the PCF offers certain advantages over K or L functions for
analysing patterns with these kinds of multiple scales and different kinds of
interaction, although, in general, such methods offer complementary
perspectives.

3.2. Crossbow Triggers and Qin Terracotta Warriors

Of course, real archaeological distributions rarely, if ever, manifest themselves as
such completely recovered, simply bounded datasets. The first of our three
archaeological case studies therefore explores some of these analytical issues as
they arise at the intra-site scale. The tomb complex of the first Chinese emperor,
Qin Shihuang (259-210 BC), is famous, amongst other things, for its pits of life-
sized, terracotta warriors, buried in battle formation, with full military
equipment. As an example, we can consider the distribution of bronze crossbow
triggers (this being the only part of the crossbow that survives archaeologically)
that were found alongside the warriors in the easternmost part of pit 1. A plot of
these artefacts against the warriors (Figure 3) makes it clear that the overall
crossbow trigger distribution itself is strongly clustered in space due both to the
shape of the corridors and the nature of terracotta army’s battle formation (with
crossbowmen only in certain parts of the army, particularly along the flanks).
This, in and of itself, is probably not something we need to assess via more
complicated statistical treatment, but in passing, it is worth noting that the
corridors represent a very irregular study area that raises some complicated
issues to do with ‘edge effects’ (e.g. how we handle the fact that the annuli must
be truncated to reflect the fact that points cannot fall beyond the corridor area,
as well as the possible inaccuracies that arise from our lack of knowledge about
areas immediately west of the excavated portion of pit 1).

For our purposes here, however, a key interest is not how to characterise the
overall pattern of triggers, but how we might modify the methods introduced
above to consider patterning amongst different sub-groups of crossbow trigger.
More precisely, metrical, typological and materials analysis of the triggers has
been able to distinguish subtle but undeniably different trigger sub-groups that
suggest the existence of different weapon-casting moulds, different metallurgical
workshops and/or different organisational practices. The difficult question
therefore becomes: how do we assess the spatial distribution of the trigger sub-
groups while controlling for the overriding spatial structure of trigger
distribution in general?
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Figure 3. Intra-site spatial distributions: (a) Qin terracotta warriors (grey squares)
and bronze crossbow triggers (black circles) in the easternmost parts of pit 1, (b) a photograph
of a bronze cross-bow trigger.

A good example is the trigger sub-group shown in figure 4a. This is a group that,
when studied in detailed, exhibits small but distinct morphological and
typological differences from other triggers. To recap, when we focus on the
possible spatial patterning of this sub-group, we clearly want to control for the
spatial structure of the triggers as a whole (and by extension the formations of
crossbowmen). To do so, we run a Monte Carlo simulation in which the triggers
attributed to this particular sub-group are assigned at random amongst the
overall trigger assemblage. In fact, the group 2 triggers in the pit are, themselves,
visibly clustered, beyond the pattern imposed by the battle formation (Figure 4a)
and, again, there may not be a need for a formal method to recognise it in this
case. However, it is useful to consider this particularly clear-cut example as a
proof of concept, and in the knowledge that such standardised evaluation will be
far more important in other less obvious cases. Figure 4b shows a pair
correlation function in which this clustering is very evident in the observed
result substantial deviation above the 95% envelope. More precisely, the plot
indicates particularly strong clustering of this sub-group up to distances of
perhaps 3-4m radius and then up to 7-8m, with further possible clustering at
much larger distances. There are some interesting processes that are likely to be
behind such clustered patterns of trigger sub-groups in the pit. For example, they
may reflect different workshops producing marginally different crossbow
triggers and procedures for the storage and placement of the crossbows in the
pit in batches (e.g. zones of the pit that were equipped with crossbows in one go).
Applied more broadly to other trigger sub-groups, other weapon types and other
artefacts in the pit, such analyses can begin to map out coherent activity spaces



and explore how consistent they were in size, arrangement etc. (see especially, Li
2012; Martin6n-Torres et al. in press).
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Figure 4. Spatial analysis of trigger groups: (a) group 2 triggers shown as triangles and the others
as grey dots; (b) a pair correlation function (observed values in black and 95% critical envelope

in grey)

4. Inhomogeneous Point Process Models

The above case study demonstrates, via a deliberately straightforward example,
that such methods can formalise our assessment of spatial patterns at multiple
scales, even in the presence of other confounding spatial factors (such as the
shape of the corridors and the clustering of crossbow triggers as a whole). In
their original form, methods such as K, L or pair correlation functions were not
easily applied to these kinds of inhomogeneous and edge-affected cases, but such
problems are now becoming increasingly tractable. The second case study
considered here, explores the potential of such inhomogeneous approaches for
assessments of site location at the landscape scale. It considers some Iron Age |
(ca. 12th-11th centuries BC) settlements documented by fairly systematic
surface survey in the central part of the West Bank (modern-day Israel and
Palestinian Territories, for the survey, see Finkelstein and Magen 1993;
Finkelstein and Lederman 1997). In particular, we focus on an area of hilly
dolomite upland of some 766 sq.km, across which 99 sites of this period have
been documented (Figure 5a). This choice of area is deliberate: it reduces the
range of complicating factors that need to be considered below, both because it
was investigated in a fairly even way by a single archaeological project, and
because it covers an area of generally consistent underlying geology (with some
knock-on implications for soils, topography, etc).
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Figure 5. Iron Age I sites in the central West Bank and four possible first-order covariates: (a)
elevation (light to dark ranges from 135-1010m ASL), (b) average annual rainfall (dark to light
ranges from c¢.335-720mm), (c) ridge landforms (darker is more likely to be
geomphorphometrically classified as a ridge), (d) topographic wetness index summed over a
local neighbourhood (darker is wetter), and (e) a prediction surface based on the three
significant covariates (darker is higher point intensity).

A quick visual inspection of figure 5a suggests informally both that there might
be a first-order trend towards slightly greater densities of settlement at higher
elevations, and also that there might conceivably some regular spacing to some
of the settlements. We can therefore build some formal point process models to
consider whether environmental affordances such as elevation are indeed
significant, and above and beyond this, whether there is yet a further second-
order propensity for the location of one settlement to inhibit the location of
another nearby. We begin by considering, as examples, four related
environmental affordances - elevation, average annual rainfall, ridge-top
landforms, and topographic wetness in a local catchment (Figures 5a-d).* This

4 The digital elevation model (DEM) used here is NASA’s 90m SRTM dataset (Jarvis et al. 2008).
The rainfall data has interpolated from 50mm contours of average annual precipitation (the
original contours are courtesy of the GIS Center, Hebrew University of Jerusalem). Ridge-like
landforms were defined from the DEM via a fuzzy feature classification across focal filter scales
from 3x3 to 11x11 cells (Fisher et al. 2004). Catchment-based topographic wetness was
calculated via focal filtering of a standard topographic wetness index surface (itself derived from
the DEM) in a way that summed all values within a circular neighbourhood of 2.5km radius
(about half an hour’s walk and a common threshold for daily travel budgets).



selection is prompted in part by many commentators’ informal impressions that
rugged topography and hydrology were important factors behind settlement
locations in this region and period, for a variety of practical reasons (e.g. Zertal
1988; Gibson 2001; in fact many other possible covariates have been explored
but are not considered here). Univariate regression of binned versions of each of
these variables against site intensity (figures 6a-d) suggests that rainfall is not a
particularly good predictor of the intensity of sites across the landscape, but that
the other three variables have significant positive correlations (p<0.05 or better).
In other words, sites are more common a) at higher elevations, b) where the
landforms are more ridge-like in shape, and c) where patches of ground offer
better access to surface water or soil moisture. Informally, it appears that ridge-
like locations might be the most influential of these.
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Figure 6. Univariate correlations between site intensity and a) elevation above sea-level
(r2=0.72), (b) average annual rainfall (r2=0.23), (c) ridge landforms (r2=0.82), and (d)
topographic wetness index summed over a local neighbourhood (r2=0.54). The intensities for a, b
and d have been summarised in decile bins of the covariate, while for c, the x-axis probabilities
are discontinuous due to the nature of the fuzzy geomorphometric classification used.

These univariate regressions provide a guide to likely relationships between site
intensity and various first order effects (note, as above, that we have already
removed other possible first order effects by choosing a study area that is



broadly one type of geology, and that has been surveyed by one field project with
fairly consistent methods). If we now run a multivariate regression and select
the best combination of these four variables via stepwise comparison
(minimising an Akaike Information Criterion), we find that rainfall is excluded as
we might expect, that the other three variables are all significant (p<0.05 or
better), and that this new model with a first-order trend is substantially more
effective that a null, random hypothesis. We can then create a predicted first-
order intensity surface (figure 5e) that can be used to return to the question of
second-order interactions in a more complete way.

First, as a point of contrast, it is worth considering a pair correlation function of
the settlements sites, along with an envelope of wholly random Monte Carlo
simulations (figure 7a). The observed PCF shows something very close to
regularity at shorter distances of up to ca.lkm, although the Monte Carlo
envelope suggests that this might be of marginal significance. If we then look at a
simple histogram of nearest neighbour distances (figure 7b), we can see a spike
at just over 1,000-1,250m and a Monte Carlo 95% envelope suggests that this
pattern is unlikely to occur by chance (for this method with histograms of
nearest neighbour distances, see also Wilson and Melnick 1990). In other words,
the nearest neighbour histogram provides a slightly more discerning picture of
very short distance patterning that confirms the evidence for regular spacing
that was initially visible in the PCF (the same observation is valid for other multi-
scalar functions such as K and L as well). At this stage however, we cannot be
sure whether such regular spacing has been induced by the spatial structure of
some important external influence on site location (e.g. evenly spaced ridge-
tops) or is due to internal processes that inhibited settlements being located
close to one another (e.g. competition over resources).

Figure 7c seeks to tease apart the relative contribution of first- and second-order
effects by showing the same nearest neighbour histogram for the observed
values, but this time with a simulated envelope conditioned on the spatially
inhomogeneous intensities predicted by our first-order covariates. Put plainly,
the Monte Carlo sets of points are now forced to respect the spatial
inhomogeneity modelled by the predicted intensity surface (figure 5e). As
mentioned above, we might conceivably anticipate that one or more of the first
order variables, such as evenly-spaced ridgelines, might have accounted for
some of the short distance regularity in settlement, but this is not the case. Of
course, it is possible that this continuing regularity simply means that some
important environmental covariate has not been considered, but nevertheless,
we are now at least moving closer towards ruling this possibility out.
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Figure 7. Point process models and goodness-of-fit: (a) a pair correlation function of the
observed sites with a 95% envelope from wholly random Poisson process, (b) a histogram of
nearest neighbour distances with a 95% envelope from wholly random Poisson process, (c) a
histogram of nearest neighbour distances with a 95% envelope also conditioned on the first-
order covariates model, (d) a histogram of nearest neighbour distances with a 95% envelope

also conditioned on both the first-order covariates and a second-order, area-interaction model.

Finally therefore, we can explore the goodness-of-fit (via informal visual
comparison here, though more formal statistical treatment is also possible) of an
explicit model of what might be causing these second-order point interactions.
Perhaps the most relevant one is Baddeley and van Lieshout’s “area-interaction
model” (1995) that generates patterns of inhibition and clustering with
reference to a defined circular neighbourhood around each point. The implicit
idea of this model - that points have notional territories of influence around
them - is obviously attractive given our understanding of how many human
settlements work. We can draw upon our knowledge of the observed spacing
between settlements and set the parameters to suggest a radius for the
interaction neighbourhood of just over 655m radius (half the median nearest
neighbour distance), and inhibitive effects that are very strong but not absolute
within this zone. These parameters lead to sites spacings that are often twice the
neighbourhood radius and which often suggest formal or informal village
catchments of less than 135 ha, with such a scale being not unreasonable given



evidence for fairly small Iron I community sizes of dozens to no more that a
couple of hundred people in this area. Figures 7d demonstrates that the
histogram of observed nearest neighbour distances now falls within the Monte
Carlo envelope. As we discuss below, other explanatory models might
conceivably offer better or equivalent fits, but by narrowing down the range of
possibilities in this formal manner, we clarify our thinking about what might be
plausible kinds of causal phenomena in a very useful way.

5. Models with Temporal Uncertainty

Our final case study is again one focused on settlements and landscapes, but with
a greater emphasis on diachronic comparison in the presence of uncertain dating.
Temporal uncertainty is an elephant in the room of much archaeological
interpretation. It is a near ubiquitous feature of archaeological datasets, whether
these are radiocarbon dates, geoarchaeological deposits or individual artefacts.
There is insufficient room to discuss this topic at length, but for our purposes
here, one primary risk in the spatial analysis of point distributions is that they
might reflect a chronological palimpsest that thwarts our ability to unpick single-
period, contemporary point patterns. This is also a topic to which many
archaeologists have discretely turned a blind eye: for example, it is no more than
a convenient analytical assumption that all 99 of the Iron I settlements in the
central West Bank study area discussed above were inhabited at exactly the
same time during that phase which spans a couple of centuries (indeed a few of
the unusually clumped sites in the eastern part of the study area might be
seasonally occupied). In other cases, the chronological range of the sites under
investigation is even broader and the risk of drawing misleading conclusions is
correspondingly greater. This is especially true with regard to the assessment of
second order effects and the processes that lead to them. Michael Barton (this
volume) nicely outlines an example of a regularly spaced pattern of small sites in
north-central Arizona that might be due to patterns of shifting clearance, short-
term cultivation and abandonment, in which many of the sites involved belonged
to the same broad period, but might not be strictly contemporary. The implied
processes of interaction are, in this case, quite different and the discussion at the
end returns to the well-known problems of equi-final models that this raises.

5.1 Aoristic Methods

One way to engage more effectively with temporal uncertainty is for us to make
the best of all our available temporal information, however fuzzy. Occasionally,
we can define an explicit probability distribution that suggests how likely it is for
an event is to have occurred at a certain stage in time based on a range of
sources of knowledge (e.g. diagnostic artifacts, clear stratigraphic relationships,
absolute radiocarbon dates, etc.). Even so, such results rarely produce a normal
distribution that can be conveniently summarised by a single summary value
and confidence interval. Instead, we are more likely to have the kinds of irregular
probability distribution often produced, for example, via Bayesian modeling of
calibrated radiocarbon dates and associated soft information. More importantly,
such information-rich cases are rare: in most instances, we can only suggest a
very approximately bounded ‘time-span’ within which the event is likely to have
occurred and, within this, assume a simple, uniform probability distribution (i.e.
implying that an event has a similar chance of having occurred at any stage



within the time-span). ‘Aoristic’ analysis is an approach that provides a way of
quantifying these temporal uncertainties and incorporating them into
subsequent analysis (particularly in the case of simple timespans where we
assume uniform probablities). It was initially developed in criminology (Ratcliffe
2000), and has subsequently also been adopted by some archaeologists for
looking at both individual artefacts and larger archaeological sites (Johnson
2004, Crema et al. 2010; Pentedeka et al. 2010).
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Figure 8: Temporal uncertainty in point patterns. The left panel depicts a simple
hypothetical point pattern and (above this) our degree of temporal knowledge about each of the
six point events (A-F) over five time-blocks (t1-t5). The grey horizontal bars represent the time-

span of each event, showing that point event D has low uncertainty (the point event belongs
exclusively to time-block t1) and event B has higher uncertainty (the point event belongs
somewhere between time-blocks t3 and t5). The three panels in the the middle show three
possible realisations of the actual temporal (middle panel) and spatio-temporal patterns (right
panel, for time-blocks t1 and t2).

More precisely, given a specific set of points with their temporal probability
distributions, there will be a limited number of possible spatio-temporal patterns
that might actually have arisen. Instead of ignoring this uncertainty and
producing a single, but misleading, spatial analysis, we can generate different
possible spatial patterns based on these temporal probabilities and then obtain a
distribution of the more and less likely results. Figure 8 is a schematic
representation of both the problem and the possible solution: take, in this case,
six point events (A-F) that each occurred in one of five time-steps (t1-t5), but can
often only be ascribed archaeologically to wider time-spans (i.e. figure 8, left).
Each of the actual scenarios in the middle and right hand-panels of this figure are
possible realizations of the pattern, amongst many others, given the state of our
temporal knowledge. The only way to explore what possible spatial patterns
might really have been present is therefore to analyse a whole host of possible



realisations and explore if there are any first- or second-order spatial properties
that persistently crop up. If for instance, 90% of all the possible point patterns
are spatially clustered, we will have a relatively high confidence that the
observed pattern was indeed clustered.

However, while from a theoretical standpoint, it might be tempting to consider
each and every possible spatio-temporal configuration, in practical terms this is
computationally prohibitive as the number of possible scenarios is often
intractable. The alternative however is simply to sample a finite number of
possible realisations via Monte Carlo simulation and calculate the frequency of
certain spatial patterns in the results (see Crema et al. 2010 for further details;
and Izquierdo et al. 2009 for a similar perspective).

5.2 Middle Jomon Settlement

Our final case study combines aoristic and Monte Carlo methods to consider
settlement patterns amongst the Jomon hunter-gatherers of central Japan. In a
sense, it offers an ideal case for tackling the issue of temporal uncertainty
because, while careful pottery study and an amazingly dense number of
emergency excavations (Habu 2004; Kobayashi 2008) provides one some of the
most detailed spatial distributions and relative chronologies known for any
prehistoric complex hunter-gather groups worldwide, it remains true that some
Jomon pithouses and broader settlements can be ascribed to only fairly broad
chronological rnages whilst others can be dated far more accurately.

Moreover, Jomon settlement patterns exhibit some interesting possible patterns
that may relate to changing demography, social practices and subsistence
strategies. For example, several studies (e.g. Imamura 1996) have indicated a
sudden rise in the overall number of Jomon residential units during the first part
of the Middle Jomon period (ca.3530-2470 cal. BC), followed by a rapid collapse
after few centuries. Some authors explain such dynamics as due to increasingly
intensive use of certain plant resources during the early Middle Jomon that made
it possible to maintain higher population densities, but which became more
problematic during a subsequent climatic cooling phase in late Middle Jomon
which may have led to a reduction in the overall availability of these resources
(Imamura 2002, Habu 2008). In terms of spatial patterning, most commentators
agree that there were larger, more nucleated settlements prior to the proposed
population collapse and more dispersed, smaller settlements after it. While such
a broad dichotomy seems plausible for the Middle Jomon, it remains difficult to
consider tempos of change over smaller timescales or to compare these
processes with those in earlier or later periods of Japanese prehistory. Aoristic
analysis and Monte Carlo simulation can however provide a good analytical
framework for such research.
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Figure 9: a) Distribution of excavation units containing at least one pithouse attributed to Early
to Late Jomon (filled and hollow circles) and locations where at least one pithouse with a
probability of existence higher zero at one of the two temporal blocks examined is present (filled
circles). b) Number of PCFs with significant clustering (above the horizontal line) and significant
dispersion (below the horizontal line) for time blocks 2950-2850 cal. BC (grey shaded bars) and
2750-2650 cal. BC (hollow bars) with 1000 simulated spatio-temporal patterns.

The case study area for the analysis that follows is located on the western side of
Tokyo Bay, near the modern city of Chiba. We have chosen an arbitrary square-
shaped area of 15x15 km within which 120 separate open-area excavations have
documented some 1418 Jomon pithouses that can each be attributed to
somwhere between the Early and Late Jomon period (ca. 5050-1270 cal. BC;
figure 8a). For each of these pithouses, we can define a more precise time-span of
existence from the description of pottery and associated artefacts available from
excavation reports. We can then spit the whole 5050 to 1250 cal. BC timeframe
into arbitrary chronological blocks of 100 years each and calculate the
probability that a given pithouse actually exists during that block. For our
purposes here, we compare two distinct time blocks - 2950-2850 cal. BC during
a phase of population increase, and 2750-2650 cal. BC at the observed peak in
population. For each of these two, we then generate 1000 Monte-Carlo
simulations of possible spatio-temporal patterns. In these simulations, and again
for the purposes of this example, we designate a new settlement to exist at a
certain location, if an excavated area at that spot is allocated at least one
pithouse for that chronological block.

The resulting simulations provide a series of realized settlement patterns: in
order to explore differences in the respective spatial distributions for each
period, we computed a series of PCFs. Just as in our earlier case studies, each
observed PCF can be compared to an envelope generated from 999 Monte Carlo
sets, each with an identical number of points and each only allowed to exist
within the 120 parent locations where Early to Late Jomon pithouses has been
actually been recovered. This method of constrained randomisation is similar to



the one adopted for the case study on bronze crossbow triggers, and allows us to
account both for the patchy nature of modern excavation and for some general
first-order, locational choices the Jomon may have had over the long term (the
latter being of great general interest of course, but not for our analysis here).

Figure 9b shows the frequency of instances among the 1000 simulated spatio-
temporal patterns where the observed results depart from the 95% envelope of
random values. During the earlier phase of population increase (2950-2850 cal
BC) settlements appear to be aggregated to varying degrees over distances up to
600 or even 1,000m radius (and indeed, whether we see this as an observation
about inter-settlement clustering or simply large extensive settlement areas is
partly just a question of semantics). At much larger spatial scales, there are a few
instances of dispersed patterns, but these are fairly rare, with an exception at ca.
4,700-4,900m, where about 70% of the simulated patterns showed dispersion.
Also notice how, at some spatial scales, (e.g. at ca.1,500m), the number of
instances of clustering and dispersion are roughly equal, implying that our levels
of available information are insufficient to draw any robust conclusions. A few
hundred years later, when the population size reached its peak (2750-2650 cal
BC), the settlement pattern is notably different. Firstly, the short-distance
clustering is still present, but now only occurs of a much smaller range (<300m
radius). This indicates that clusters of nucleated settlements may have started to
decrease in their sizes, an idea that is supported also by a small peak of
dispersed patterns at ca. 1,000m. Secondly there is strong evidence for patterns
of dispersion (i.e. regular-spacing) at separation distances of c.2,500 meters.
Thirdly at ca.4,900 there is a relatively high number of simulations (>95%) that
lead to aggregated patterns, the opposite result to the one seen in the previous
time-block. Clearly, the patterns for the two different time periods are not the
same, with the former being characterized by a greater nucleation and the latter
possibly by greater dispersion at medium distances and aggregation at higher
distances (i.e. broad clumps of settlement activity with intervening spaces of
some 5km between these). While we still need to treat such results cautiously,
the analysis suggest that the beginnings of the dispersed patterning know to be
present in anger by the mid 34 millenium BC is already visible during the period
of peak settlement, reflecting possible early instances of group fission that have
been plasuible argued as being driven by the diminishing availability of local
food resources.

6. Discussion

The theoretical discussion and three case studies above should convey the
degree to which it is worth reinvesting in the formal modelling of point patterns
and processes in archaeology. In any case, from this discussion we can draw out
several practical conclusions:

a) Careful definition of a study area is important.

b) Histograms of the distribution of nearest neighbour distances offer a
fairly robust way of exploring short-range regularities in point spacing,
and can be made more robust as a confirmatory method via Monte Carlo
simulation. Traditional Clark and Evans tests are far less discerning.



c) Multi-scalar methods such as K, L and pair correlation functions are
potentially useful for understanding second-order interactions, but are
inappropriate on their own if there are grounds for thinking the patterns
exhibit spatial inhomogeneity.

d) We can use multivariate regression models (in a similar manner to
established practices in archaeological predictive modelling) to provide
first order measures of the varying intensity of points across a study area
as influenced by a range of external variables. These can then offer a
platform from which to consider second-order interactions via the above
multi-scalar methods even where spatial inhomogeneity in present.

e) The kinds of temporal uncertainty present in most archaeological
datasets can be successfully addressed in spatial analysis by adopting a
probabilistic and Monte Carlo framework.

It is worth ending this chapter by revisiting one well-known criticism of formal
approaches to spatial analysis and modeling in archaeology. A common
suggestion is that such efforts are, at best, frustrating and, at worst, have little
interpretative value (e.g. Hodder 1977), because: a) several different modelled
processes can sometimes be shown to produce the same or similar outcomes (i.e.
they are equi-final or convergent) and b) the same model can sometimes be
shown to lead to quite different outcomes depending on its exact starting
conditions or the role played by random chance (i.e. it is multi-final or divergent).
However, while these challenges should encourage us to avoid statements that
imply a cast-iron certainty about causal relationships, they should not dissuade
us from trying to model them at all: a smaller set of equally plausible models is
still better than a situation in which anything goes (see also Premo 2010). In this
sense, the above discussion has led us from a traditional quantitative emphasis
on simply ‘rejecting null hypotheses’ towards one in which greater emphasis is
placed on comparing the fit of a series of potentially plausible explanations (i.e.
in general sympathy with a maximum likelihood approach). In other words,
Monte-Carlo methods allow us to embrace equifinality by weighting alternative
hypothesis in probabilistic terms. This approach should be welcomed as more in
tune with interpretative archaeologies of landscape that often look positively on
the co-existence (temporary or otherwise) of rival explanations: there is no
reason that a similarly healthy lack of certainty should not be welcomed for
quantitative approaches as well.
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