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ARTICLE INFO ABSTRACT
Dataset link: Chemical analyses of archaeological artefacts are often used for provenance studies and for assessing whether
https://github.com/jmkvieri/BBLoP specific performance characteristics were targeted by craftspeople in the past. Traditionally, the answers

to these questions were sought by identifying compositional averages and by studying their correlations
with either the geochemical signatures of candidate raw material sources or the corresponding physical or
chemical properties of the studied materials. However useful, this approach only exploits part of the potential
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Modelling information locked inside the chemical compositions of archaeological artefacts. We argue that different levels

Chemical compositions of compositional dispersion observed within and across archaeological assemblages, and in particular changes

Craft production in them as a function of behaviourally meaningful factors (such as the size, function, or recovery location of the

z[ulijcil objects), are sources of information in themselves. To gain probabilistic insights into both types of variability
old alloys

(averages and dispersions) simultaneously, we introduce variable dispersion beta regression models for the
archaeological sciences. In doing so, we show how adopting the beta distribution provides a significantly
improved alternative to previous solutions to modelling compositional data within the field — namely, those
involving simple linear regression on log-transformed data. These approaches often result in numerically
impossible predictions, whilst beta regression restricts the model predictions between the upper and lower
compositional bounds, accounts for the inherently inconsistent variances of compositional data, and explicitly
permits the modelling of compositional dispersions as a function of covariates. Finally, we expand upon this
toolset by showing how using a hierarchical model specification within the framework accounts for both
local variation and more widely shared practices of material processing and procurement concurrently, and
alleviates issues to do with sampling uncertainty. We demonstrate the proposed approach with a study of
Muisca gold procurement practices (AD 600-1600) in the Eastern Highlands of Colombia, based on a dataset
of 243 elemental analyses. The results allow us to argue for intra-regional movements of fresh geological gold
imported from a variety of distant sources. We suggest these movements could result from contributions of gold
by people converging into the same location for festivities. The approaches taken to modelling compositional
data are readily applicable to other sub-disciplines of the archaeological sciences, such as compositional studies
of ceramics and glass, or modelling the variability of diets in isotopic studies (see Supplementary Material SO
for an extended summary in Spanish).

1. Introduction its potential have been viewed in the past. For instance, in their sem-
inal paper, Sillar and Tite (2000, 17) highlighted how archaeological

Technological studies have long recognised that the desired per- materials science “allows us to assess the extent to which physical and
formance characteristics of materials and technologies are culturally chemical performance characteristics have influenced past technolog-

construed (Schiffer and Skibo, 1997). However, considerations of social
and cultural meaning have remained more successful in compositional
studies focused on local scales of analysis, than on regional or cross-
regional ones. This is largely down to how archaeometric evidence and

ical choices and, thus, provides a baseline against which the role of
cultural factors can be considered”. This search for culturally preferred
performance characteristics — or, equally, the cultural processes of raw
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material procurement — has typically manifested in the calculation and
comparison of compositional averages, including across large spans
of space and time. Focusing on the averages alone, however, fails to
properly account for individual variation, in turn limiting the insight
into the intentionality of any one craftsperson in terms of the target
performance properties, or in terms of their practices of procuring and
processing raw materials.

At the same time, while seemingly easier to reconstruct, neither
can local-scale decision-making processes be fully understood unless
they are situated within their broader social and technological systems.
In being informed by their society’s cultural values and ideological
concepts (Lechtman, 1977; Sillar and Tite, 2000), people often make
technological choices on a subconscious level. Behavioural proxies may
then only become meaningful in a relational network, rather than
reflecting specific design decisions made on individual artefacts. In
other words, the signatures observed for any one context may only have
meaning within the broader context of similar or dissimilar ones. This
represents a dilemma, in both necessitating that the field accounts for
how artisans and consumers operate within their social and historical
contexts, whilst also implying that such contexts are methodologically
more challenging to reconstruct.

For a more nuanced interpretation of compositional proxies within
the archaeological sciences, this paper presents two new ways of think-
ing about and modelling compositional variability in large-scale archae-
ological datasets. The new tools put forward intend to explicitly address
both (A) how studying compositional dispersions complements insights
from their typical tendencies, even where the intentionality of artisans
is beyond our reach, and (B) how local and more widely shared cultural
practices of material processing and procuring vary concurrently.

To provide a robust framework for doing so, we also present a new
approach to modelling compositional data within the field. Theoretical
discussions around how to derive behaviourally meaningful models
from compositional data have long been accompanied by methodolog-
ical disagreement over how to treat compositional data in statistical
applications (Aitchison et al., 2002; Baxter, 1995; Baxter and Freestone,
2006; Tangri and Wright, 1993), with log-transformations being used
as the standard go-to approach. This paper offers a new, improved
modelling solution based on the beta distribution, which properly
accounts for the constrained nature of compositional data (i.e., the data
being bounded between 0 and 100 wt%).

Utilising the beta regression framework, we then expand upon
new ways of modelling compositional variability, introducing variable
dispersion submodels and using archaeometallurgical datasets as an
example. We propose to treat changes in compositional dispersions as
an opportunity to identify processes that have led to their creation,
and thus provide new tools that allow us to move beyond ‘“baselines
of performance” in the chemical analysis of archaeological materials.
We show that regardless of the underlying drivers of individual decision-
making processes, assessing these changes and their drivers at different
scales of analysis is an important source of information in itself, which
complements or even alters archaeological interpretations based on
compositional averages. In particular, such an approach allows us to
make inferences about the broader systemic contexts of craft produc-
tion, beyond the level of individual production episodes. Thus far, such
changes in compositional dispersions have not fully been exploited
as an archaeological source of information. In particular, excess em-
phasis on compositional means has typically resulted in researchers
considering the dispersion of observations around their sought-after
averages mainly as a source of “noise” in the data, or as something
undesirable and largely uninformative. Even within broader archaeo-
logical modelling applications, model variance has mainly been treated
as an indication of how strong the association between the predictors
(e.g. distance to ore sources) and the modelled outcome (e.g. com-
positions) is. This is typical even if this “noise” is modelled as being
influenced by the modelled predictors, to allow for more statistically
robust inferences.
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In archaeometallurgy, at the local scales, some have explored de-
scriptive statistics such as coefficients of variation (CVs) in slag compo-
sition to compare standardisation in metallurgical engineering
(Humphris et al., 2009; Pryce et al., 2010). Overall, while some have
also focused attention towards the shape of different compositional
distributions or cumulative frequencies and what these tell us about
primary/secondary alloying practices (Pollard et al., 2018), no explicit
attempts have been made to examine compositional dispersions in
probabilistic terms. Rather, archaeometallurgical research at regional
scales is still focused on assigning objects into groups based on compo-
sitional signatures and mapping these fixed assignments (Perucchetti
et al.,, 2020), and/or making inferences on the basis of comparing
point estimates, such as average compositions, across different cultural
groups or time periods (Bray and Pollard, 2012; Pollard and Bray,
2014). Alternative approaches have included, for instance, group-
ing metals according to presence/absence classifications of certain
elements and conducting ubiquity analysis of the different groups,
providing potential insights on recycling (Bray et al., 2015).

These approaches, although contributing to our understanding of
the bigger picture, neglect important information locked inside the
chemical compositions of archaeological artefacts. Whilst we agree
that processes of recycling provide insights into the changing value of
metals and their contexts of production, we argue that a fundamental
difference of interpretation arises if we carefully examine how composi-
tional variability is structured. For example, if we observe an increased
frequency in a highly mixed alloy type (see for example Bray et al.,
2015) accompanied by high levels of dispersion of compositions within
the mixed alloy group, we might interpret the evidence at hand as
increased improvisation and lack of centralised control over metal pro-
curement and processing practices. However, if the overall dispersion
of compositions were shown to be low against this surge in the use
of a highly mixed alloy type, the observed pattern might suggest that
all the metal in circulation at some point became pooled and recycled
at a few centralised locales. Focusing on averages or the ubiquity of
different compositional groups fails to account for such differences,
whilst simultaneously modelling both averages and dispersions can do
S0.

At the same time, to fully appreciate the continuity and disconti-
nuity of human engagements with technological knowledge and their
environments, craft production studies also need to find ways of as-
sessing patterns of both local variation and supra-local shared practices
concurrently. This applies even within the context of the more tradi-
tional discussions focused on the typical compositions and their drivers.
If the compositional signatures of different local groups are aggregated
into a single homogeneous entity for analysis, the patterns reflecting
any local choices become easily obscured. In addition, this artificial
aggregation simultaneously obscures the overarching drivers of craft
production practices at the broader scales by placing excess emphasis
on the patterns observed for the more intensively sampled locales, and
by taking their average to be representative of the whole. As such,
not only have archaeologists placed excessive emphasis on average
compositions, but also, in ignoring sample interdependence, they have
also risked focusing on artificially constructed averages. This is despite
the availability of statistical approaches, known as multilevel models
(also known as hierarchical models), that can explicitly account for
sample interdependence, whilst simultaneously modelling variation at
the global scales (for other archaeological applications, see: Banks
et al., 2019; Perri et al., 2019; Wolfhagen, 2020; Fernée and Trimmis,
2021; Crema et al., 2024).

Statistical modelling, generally speaking, has been underexploited
in archaeological craft production studies. Modelling changes not only
in the typical compositions, but also in their dispersions, can drastically
alter any archaeological interpretations based on the data. Assessing
how much compositional variability is explained by shared practices at
the regional level and how much by differences across sites, in turn,
provides insight into, e.g., the strength of regional standardisation, or
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Fig. 1. Hypothetical examples of the four main types of variability encountered in compositional archaeological datasets, alongside the suggested approaches for modelling them
within the beta regression framework. Circles represent individual artefacts, with the colours depicting different hypothetical chemical compositions. Each cluster of circles, in
turn, reflects a different sub-grouping in the data, e.g., different archaeological contexts of discovery. Type 1 variability captures variation in compositional averages across such
sub-groupings. Type 2 variability, in turn, captures the overall dispersion of compositions for each dataset. Type 3 variability captures how the chemical compositions vary at
the local and supra-local levels concurrently. For instance, the example with low variability is one where the structure in the compositional variability cannot be explained by
differences across the sub-groupings. In contrast, the example with high variability suggests that all of the compositional variability in the data is explained by differences across
these sub-groupings. Finally, although not explored in this paper, Type 4 variability can be used to model how compositional dispersion varies at the local and supra-local levels
concurrently, shedding light on processes of standardisation at different scales of analysis, and could be done by extending hierarchical model definitions to the variable dispersion
sub-model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

lack thereof, in craft production practices. More broadly, discussions
within archaeology are often centred around the variability of cultural
practices and what this may imply about past human behaviour - for
instance, in relation to non-specialised and specialised craft production
settings (Costin, 1991; DeMarrais, 2013). Similarly, others have pro-
posed that periods of innovation are associated with higher degrees
of variability than periods of technological stagnation (Eerkens and
Lipo, 2005). However, while this concept of “variability” is frequently
referenced, its precise implications for archaeological data are often not
clearly defined.

Fig. 1 conceptualises the four main different sources of composi-
tional variability, in particular, that can be encountered in archaeo-
logical datasets. To introduce the reader to each type in more detail,
this paper will be divided into three main parts. The first introduces
beta regression as the new standard for archaeological compositional
data analysis and how it can be used to model compositional averages
(1A), followed by the incorporation of variable dispersion submodels
into this framework (IB). It is targeted at the general archaeological
science audience, to encourage the widespread application of the ap-
proaches within the field. The second part then builds upon these tools
with the adoption of hierarchical model definitions in compositional
craft production studies (II). This second part does not go into detail
about the underlying mathematical principles, but, rather, expects some
knowledge of the relevant statistical approaches from the reader, given
that multilevel modelling approaches have previously been discussed
by other archaeologists (see citations above; for more generic and
thorough introductions to the mathematical principles behind multi-
level modelling, see, e.g., Goldstein (1987), McElreath (2020), with the
latter also providing extensive examples of practical applications in R
and Stan). Finally, the third part puts the tools introduced in both of
these sections into practice, by presenting an archaeological case study
focused on Muisca metal procurement and processing practices from
pre-Hispanic Colombia (III).

2. Part I: Modelling compositional data
2.1. Part IA: Working with the compositional constraint

Modelling compositional data presents challenges because they ex-
hibit features that are not tractable by most conventional statistical
approaches. The first challenge relates to the skewness or asymmetry
of compositional data, which occurs as the result of the compositional
constraint (i.e., their constituents summing up to a constant — in the
case of analytical chemical data on object compositions, 100wt% after
normalisation). This means that compositions are likely to violate the
normality assumption that is inherent to many statistical approaches,
such as simple linear models that form the basis of many standard tests
commonly used by archaeologists, including t-tests and ANOVA, as well
as more complex modelling approaches. A closely related issue is that
compositional variables are typically heteroskedastic, whereby their
variance tends to be higher when the central tendency falls closer to
half the maximum value, e.g. 0.5, than when it falls near the lower and
upper bounds, e.g., 0 or 1 (Cribari-Neto and Zeileis, 2010) — whereas
most statistical tests and models assume homoskedasticity. Composi-
tional data, therefore, require either the use of an alternative statistical
distribution to the Gaussian, or the use of data transformations.

Until now, a common solution within archaeology has been to use
logarithmic data transformations, to make the data suitable for more
conventional statistical approaches, given that they can often reduce
skewness and help the data approximate a normal distribution. They
do, however, also routinely fail to do so, especially but not only when
the data have a left-skewed distribution. Log-ratio transformations are
further sometimes used when dealing with more elements of inter-
est, following Aitchison’s proposal in 1982 (Aitchison, 1982), given
the need to further account for the constant sum constraint in such
cases (Aitchison et al., 2002; Lépez-Garcia et al., 2018; Pawlowsky-
Glahn and Egozcue, 2006). Others have opted to apply conventional
statistical approaches to non-transformed data (Tangri and Wright,
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Fig. 2. Beta densities at different values of u (mean) and ¢ (dispersion). Note the flexibility of the beta distribution in allowing for a multitude of shapes for the compositional
outcome, depending on the corresponding parameter values. Note, also, how the overall dispersion is higher when the central tendency falls towards the middle of the interval
(0, 1) than towards the two compositional extremes, even where the dispersion parameter is fixed at the same value, e.g., on the third row where ¢ = 10.

1993). Some have pointed out that while the elemental composition of
raw materials may be expected to follow a normal or a log-normal dis-
tribution for a specific geological source, archaeological materials are
often the product of mixing various sources of raw material, resulting in
more complex signatures (Baxter, 1995, 515). Log-transformation may
thus mask archaeologically important information.

We will show that neither approach is ideal, given that traditional
statistical models of compositional data based on both non-transformed
and log-transformed data are prone to making predictions outside of the
sample outcome space (e.g., 120wt%), potentially biasing inferences on
the strength and nature of the relationships with covariates.

A new solution: the beta regression

We present an alternative solution for analysing compositional data
whereby the constrained nature of the data is directly modelled, as
opposed to being dealt with data transformations. We do so by adopting
the beta regression structure, first proposed by Ferrari and Cribari-Neto
(2004), which works on a similar basis to other Generalized Linear
Models (GLMs). The key idea is to model the compositional variable
of interest as being beta-distributed and therefore restricted to the
standard unit interval (0, 1).! This will accommodate for skewness in
the data. In fact, the beta distribution is highly flexible in allowing for a
multitude of different shapes (Ferrari and Cribari-Neto, 2004, 801-802),
including skewed, symmetric, U-shaped, or even flat distributions,
depending on the corresponding parameter values, as shown in Fig. 2.
Therefore, it can also accommodate several compositional signatures,

1 For fitting a beta regression model, the compositional response variable,
therefore, needs to be converted from percentages to proportions.

for instance, those of assemblages including either recycled or freshly
alloyed objects (Pollard et al., 2018).

We thus substitute the more commonly used Gaussian probability
distribution with the beta distribution in our basic model definition.
We use the alternative parametrisation of the distribution introduced
by Ferrari and Cribari-Neto (2004), with the parameters y and ¢
representing the mean and dispersion of our distribution. As the authors
point out, these are more straightforward to interpret in terms of
modelling outcomes compared to the more traditionally used shape
parameters, p and g (see Supplementary Material S1.1 for details).

A logit link function logit(-) is used to map the non-linear rela-
tionship between the response and the predictors onto a linear one,
following the same principle used in other GLMs. Thus, given an ob-
served proportion y; for the sample i (e.g. percentage of Cu for a given
artefact), we can describe our model using the following probabilistic
notation: For

y; ~ Beta(y;, ¢) (€H)

i=1l..n:

logit(u;) = fo + Prxi1 + Poxip + -+ + Prxip

where x;, are the corresponding predictor values for the given sample
i (e.g., the object volume modelled using a continuous variable, or the
object type modelled using a categorical indicator variable), with a
total number of predictors k, and with f, being the intercept, and g, ;
the corresponding regression coefficients. Fig. 1 shows hypothetical
examples of assemblages with low and high variability of this type
(Type 1), pertaining to the average expected compositions according
to some predictor.

Here, it is further important to note that ¢, which describes the
dispersion of values around the predicted means, is a precision pa-
rameter, and therefore higher values imply less and lower values more
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compositional observation in the dataset and the estimated composition returned by the model, with predicted values on the y-axis and original values on the x-axis. All models
were fitted within a Bayesian framework with the vertical lines representing the 95% prediction intervals for each observation.

dispersion overall. This is in contrast to most scale parameters such as
o in a normal distribution, for which the opposite is true. The variance
of a beta regression model, in turn interpreted in the more traditional
sense of higher values implying more dispersion, is calculated as:
ui(l— )

1+¢ @

var(y;) =

As seen here, the model variance is dependent on the values of y,
and subsequently, on the values of the predictors (Ferrari and Cribari-
Neto, 2004, 803). This is what allows for natural heteroskedasticity
in the model predictions. In other words, the model will expect less
variance when the central tendency of compositions falls towards either
Owt% or 100wt% than towards 50wt%.

Fig. 3 demonstrates how these two key features — the bounded na-
ture of the beta distribution and the naturally heteroskedastic parame-
trisation of the model variance —, benefit the modelling of compo-
sitional data. It contrasts the predictive performance of a Bayesian
simple linear regression on non-transformed (left) and log-transformed
(middle) data to the one offered by a Bayesian beta regression (right)
using the same simulated dataset. The simple linear model on non-
transformed data fails to constrain the mean predicted response be-
low the lower and above the upper compositional constraint, while
the log-transformed model makes numerically impossible predictions
above 100wt%. While the latter does constrain the response above
0, it simultaneously fails to account for the heteroskedastic nature
of compositional data, by assuming that the variance is constant at
the log-transformed scale. This results in increasingly wider prediction
intervals towards higher values of the simulated elemental composi-
tions, when transformed back to the original compositional scale. It
is further worth noting that this is despite log-transformation having
alleviated skewness in the data in this particular case (Figure S1).
In contrast, the beta regression example in Fig. 3C shows that no
predictions are made outside of the standard unit interval (0, 1),

while the prediction intervals for each individual observation are fairly
consistent throughout different compositional values. In sum, adopting
the beta regression structure provides an excellent way of dealing
with univariate compositional data in the archaeological sciences and
beyond, owing to the following reasons:

(a) Ensures that no predictions are made outside of the interval (O,
1).

(b) Accommodates for skewed, U-shaped, uniform and quasi-normal
distributions for the outcome.

(c) Allows for natural heteroskedasticity in the model, even where
the dispersion is not explicitly modelled as a function of covariates.

(d) Does not require data transformations, whereby the model out-
puts are readily interpretable at the original compositional scale
(Ferrari and Cribari-Neto, 2004).

One limitation of the beta regression approach is that any observa-
tion for the response variable cannot take values of either exactly 0 or
1. The analyst will, therefore, need to decide on how to deal with such
values. In cases where the detection limit for a given element in the
whole dataset is known, i.e. if dealing with an identical instrument and
analytical procedures, a pre-determined proportion of this (e.g. 2/3)
could be used to replace the Os. In collated legacy data sets, one possi-
bility is to use an artificial detection limit for the given element instead,
taken to be the lowest value detected for said element. Values at the
upper compositional bound can be fixed at values that are nominally
close to it, e.g. 0.999. It is also worth noting that log-transformation
is similarly incapable of dealing with Os and, therefore, provides no
superior solution to this problem.
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2.2. Part IB: Model variance — an archaeologically insightful source of
information

As stated above, adopting the beta distribution offers a straight-
forward solution to account for the inherently heteroskedastic nature
of bounded data. However, in many cases, the dispersion of values
around the mean can also vary as a function of covariates. These
patterns of variation can provide insights on behaviourally meaningful
changes in, e.g., the range of alloy compositions or geological sources
of metal being exploited. Ignoring this type of structure, where it is
present, also leads to biased estimates of the other model parameters.
This, in turn, also affects, e.g., the predictions for the often sought-
after compositional averages, even in such cases where the changes in
dispersion were to have little behavioural interpretability.

Simas et al. (2010) introduced the varying dispersion beta re-
gression model, where the dispersion parameter is also linked to a
linear function with covariates through a link function g(-) (with a
common choice being log(-), which ensures that the dispersion param-
eter remains positive and assumes that changes in the parameter are
multiplicative according to the predictors), so that for

y; ~ Beta(y;, ¢;) 3)

i=1l..n:

logit(u;) = o + BiXj1 + Porxip + -+ + BrXi

log(¢) =vo + 7121 + 722 + -+ + 72

Here, z,p are the new corresponding predictor values used to model
the dispersion ¢;, and y; , are the corresponding regression coeffi-
cients.

At its simplest, we can adopt this new tool to examine how different
cultural groups vary in terms of the standardisation of their raw mate-
rial procurement and processing practices. Fig. 1 shows hypothetical
examples of assemblages with low and high levels of compositional
variability of this type (Type 2). Were the two examples relate to two
time periods, for instance, the signatures could imply strong centralised
control over these practices for one period, and significantly reduced
levels of such standardisation or centralisation for the other. Impor-
tantly, utilising the beta regression framework also allows for assessing
whether such changes are supported by the data in probabilistic terms,
unlike exploratory methods such as CVs. The latter additionally risks
providing biased estimates in the first place, given, once more, their
inability to account for the compositional constraint.

Therefore, simply modelling the dispersion of compositions across
different chronological or geographical groupings is a starting point for
investigating the standardisation of craft production activities. How-
ever, not only does this framework readily lend itself to systematically
comparing the variability of compositions across different metallurgical
horizons or cultural groups. We can similarly extend the principle of
modelling compositional dispersions as a function of any other categor-
ical predictor (e.g. object function) and/or of a continuous predictor
(e.g. the volume of the objects or the distance from their recovery
location to the nearest ore sources).

Fig. 4 shows the posterior predictions of a variable dispersion beta
regression model based on three different simulated datasets, where
the average proportion of an element is expected to stay the same
(in this case, ~50wt%), but with its variance being a function of a
hypothetical continuous predictor. Such predictor takes on values be-
tween 0 and 5, resulting in compositions with the dispersion remaining
constant (Fig. 4A), positively correlated (Fig. 4B), or negatively corre-
lated (Fig. 4C), to the predictor. The top row shows the 95% posterior
prediction intervals of expected object compositions at different values
of the predictor variable. The bottom row shows the regression lines
for the dispersion submodels.

These simulated examples demonstrate how focusing on average
compositions in archaeometallurgical research projects may be mislead-
ing. In all three simulated datasets, the average compositions stay the
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same. However, the first dataset consistently has fluctuations of about
+9wt% around this average. In the second one, the fluctuations are
within a few wt% at low values of the continuous predictor and increase
to c. 25 wt% at its highest values. The opposite applies to the third
example.

Assuming that these are data for alloy composition in metal objects,
claiming that alloying or metal procurement practices consistently
stayed the same across all three datasets based on the average compo-
sitions would result in an erroneous, or at best partial, archaeological
interpretation. For instance, if the continuous predictor is the distance
to the nearest ore sources (e.g., in hundreds of km), scenario B could
imply that craft producers located in close vicinity to ore sources had a
strong preference for specific alloy compositions, or that they practised
more recycling than craft producers located further away from primary
sources of metal. Scenario C could imply the opposite, for instance, with
the metals having already undergone several recycling episodes before
reaching consumers further away. Since we evidently do not have direct
access to information on the data-generating processes such as how
much recycling, and of which metals, took place at a given place and
time, modelling the dispersion of compositions in this manner offers an
indirect interpretative framework for their understanding.

Ultimately, the hypothetical differences in interpretation are no-
table and of concern because of the high prevalence of studies within
the field that still rely on interpreting observed evidence exclusively
in terms of average compositions, disregarding the information con-
tained in their dispersion. The same applies to discussing compositional
groupings, whether based on elemental ranges or presence/absence
classifications, given their inherent inability to consider different levels
of variability observed within each compositional grouping. As such,
the variable dispersion approach allows us to move beyond such sim-
plistic models in enabling us to consider how the repertoire of choices
made by craft producers is impacted by broader societal processes. As
already stated, models that ignore changes in compositional disper-
sion as a function of covariates, as in the scenarios in Figs. 4B and
4C, are also fundamentally misspecified, resulting in biased estimates
of the other model parameters. Accounting for any variable disper-
sion structure thus simultaneously results in statistically more robust
inferences.

3. Part II: Multilevel models of compositional data

Researchers working with compositional data at larger scales also
need to account for the fact that human practices were not static
through time and space. In other words, they should not generalise to
broader regions or time periods based on patterns artificially induced
by data aggregation, given the inherent presence of naturally occurring
‘clusters’ in archaeological data. Examples of these clusters include, for
instance, groups of finds found in the same stratigraphic layer, from
the same archaeological site, or across the same geographical region.
Importantly, samples from the same cluster might be conditioned by
some unmodelled variables, leading to interdependencies in the data
that can bias inferences. For example, the inhabitants of one site may
have less access to copper than those of another, but still make tech-
nological decisions about the desired copper contents for the specific
object types they manufactured.

This problem is exacerbated when combined with sample imbal-
ance. Non-hierarchical models assume that the relationship between
the response and the covariate remains globally consistent (McElreath,
2020), therefore the presence of a single intensively sampled location
with some unusual characteristics might skew the inferred global re-
lationship to a covariate. Even where the different locales were to be
represented by fairly equal and large sample sizes, models that do not
account for sample interdependencies will simply take the average of
all these locales, and assign this new, artificially constructed average to
all of them. Where highly different alloy compositions were used at the
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Simulated compositional datasets with changes in dispersion according to continuous predictor
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Fig. 4. Examples of three different simulated datasets and their respective variable dispersion beta regression model outputs. The top row shows the original simulated data points,
alongside the posterior predictions for the mean predicted response shown as the red lines, with the grey envelopes showing the expected dispersion of values around the means
as standard deviations, derived from the predictions for the model variance as calculated based on the values of y and ¢ using the formula in Eq. (2). The bottom row, in turn,
shows the regression lines for said standard deviations, with the grey envelope reflecting the 95% PI intervals. The continuous predictor was standardised before running the
regression analysis and then back-transformed to the original scale, with full code used to simulate the data provided in the GitHub repository. All models are specified using a
Bayesian framework. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

different settlements, the resulting average may not be representative
of the alloying practices of any the studied sites.

Moreover, it is often of interest to explicitly model the drivers of
craft production practices across different sub-groupings in the data,
to appreciate any patterns of local variation. One approach could be
to run a model where the compositional responses and their drivers
are modelled separately for each cluster, e.g., where a categorical
predictor represents each site and the other predictors are allowed to
interact with it. At the same time, regional research projects tend to
rely on archaeological legacy data which, in addition to representing a
palimpsest of past human activities, are also inevitably the product of
different sampling regimes. If one archaeological site has only produced
a few objects with highly unusual compositions, this may reflect sam-
pling error or a bias, rather than the true underlying practices of metal
use at the site. Modelling each site’s compositions using the categorical
predictor approach will ignore any uncertainty arising from varying
sampling intensities and tends to return overly confident parameter
estimates for poorly sampled locales.

Finally, it is also pertinent to simultaneously understand both
whether broadly shared practices explain most of the variability in
the data, or if differences across more local groupings drive more
structure in the dataset (cf. example of high levels of Type 3 variability
in Fig. 1). This can provide important insights into, e.g., high levels
of regional standardisation, where variation in the data is explained
by the same changes in the covariates across all different local sub-
groupings, or — at the other end of the spectrum, — high degrees of
freedom for individual choice/expediency of raw material procurement
and processing practices, with these relationships changing between
locales.

Here, we propose to account for, and explicitly model, sample
interdependence arising from shared influences in craft production
practices by integrating hierarchical levels into our beta regression

models of compositional data, thus turning them into multilevel mod-
els. As noted by Fernée and Trimmis (2021), multilevel modelling
offers the ideal tool for assessing variability at different levels in nested
archaeological data. Within the context of modelling compositional
archaeometallurgical data, it allows for assessing how alloying and
metal procurement practices operated on both local and supra-local
scales simultaneously. By learning from both the compositional patterns
observed globally and locally, the approach also yields results that ac-
count for sampling uncertainty by shrinking the predictions for poorly
sampled locales or clusters towards the more typical compositions on
the global scale (McElreath, 2020).

Hierarchical levels can be used to model only baseline variation in
object compositions, in which case they are used to model the intercept,
or also/only to model the impact of covariates on the compositional
response, in which case they are also introduced to the slope parame-
ters. Fig. 5 shows simulated examples of hierarchical beta regression
models with (A) baseline variation only, (B) variation according to
covariates only, and (C) variation in both. Note how adopting the beta
distribution, once more, successfully restricts the predicted responses
to the interval (0, 1).

Whilst the multilevel approach has a long history of use in other
social sciences (Goldstein, 1987), its potential has been underexploited
in archaeology, and in particular, it has not been previously applied
to investigate compositional data. It has, however, been previously
applied to the chronological modelling of radiocarbon dates (Banks
et al.,, 2019); in stable isotope analysis, to the estimation of dietary
variation (Perri et al., 2019); within zooarchaeology for biometric anal-
yses (Wolfhagen, 2020); to investigate rates of diffusion of subsistence
and cultural practices (Crema et al., 2024); and to the study of intra-
site variation in stone sphere metrics, as well as to model whether
the expected proportions of ware types vary more between contexts or
trenches (Fernée and Trimmis, 2021). As such, the mathematical prin-
ciples behind hierarchical modelling have been previously discussed
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Fig. 5. An example of (a) varying intercepts (b) varying slopes (c) varying intercepts
and slopes in a beta regression model based on twenty different clusters. The g
parameters refer to the global mean of each parameter for all of the clusters combined
(B, = intercept, p, = slope). o refer to the standard deviation of the cluster-specific
coefficients from this mean (¢, = intercept, o, = slope).

by other archaeologists. In short, new levels can be introduced into
the model parameters by having a global parameter which represents
the “average cluster” (also known as a fixed effect), with additional
parameters for each individual cluster (also known as varying effects)
representing their deviation from this average. Importantly, the model
is able to share information across these two levels as the result of their
hierarchical relationship (see McElreath, 2020, Chapters 13 and 14 for
further details).

Overall, multilevel models benefit large-scale regional research of
compositional data in the archaeological sciences as follows:

(a) They allow for the explicit modelling of variation across dif-
ferent sub-groupings, i.e. clusters, in the data — such as recovery
locations, periods, regions, or stratigraphic layers.

(b) They simultaneously improve estimates of global parameters by
accounting for sample interdependence.

(c) They account for the lack of representativeness in small sample
sizes, by pooling estimates for clusters with fewer samples, accord-
ing to (i) the actual sample sizes, (ii) the overall variability between
clusters, (iii) and how far the observed, non-adjusted mean of each
cluster is from the global mean across all clusters. The approach,
therefore, allows us to directly incorporate uncertainty arising from
uneven sample sizes into the statistical model (McElreath, 2020).
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4. Part III: Muisca goldwork as a case study

To demonstrate the potential of applying these new methods to
archaeometallurgical datasets in practice, we present the results of
a hierarchical Bayesian variable dispersion beta regression model on
metal compositions from the Eastern Cordillera of Colombia (AD 600-
1600) (Fig. 6). Muisca (muexcas/moxcas) is the term attributed by the
Spanish to a variety of Chibcha-speaking groups inhabiting this region
in the 16th century (Simén, 1982). At the time of European arrival,
these comprised numerous fragmented polities, with some organised
under larger confederations and others being independent (Langebaek,
2000, 2019, 155-157). Their inhabitants practised the cultivation of
maize, potatoes, and other taxa, alongside hunting, mining for salt
and emeralds, and engaging in textile, ceramic, lithic, and metal craft
production.

Metal use in Muisca societies was closely intertwined with so-
cial, political, and religious structures. Groups of votive gold-alloy
figures (Fig. 7A), often combined with other materials, were deposited
throughout time and space as part of a widely shared cultural practice
of making religious offerings; access to these appears not to have been
restricted to any one sector of society (Lleras Pérez, 1999; Langebaek,
2003; Uribe et al., 2013). In the 16th century, during the Early Colonial
period, votive offerings were made at the end of festivities led by
chiefs and spiritual leaders, which could last days and also served
the purpose of redistributing goods (Langebaek, 1987, 50), in addition
to coinciding with days of market exchange (Langebaek, 1987, 139).
Metal adornments (Fig. 7B) were also often worn in such ceremonial
contexts, although reportedly by individuals of important social and
political status (Londofio Laverde, 1996). These adornments were often
handed down from generation to generation (Langebaek, 2003, 264),
and archaeologically, they have been found with mummified individ-
uals deposited in sacred places, and sometimes buried in cemeteries.
As such, they appear to contrast with votive figures in having a more
limited consumer pool. This is regardless of how the individuals wear-
ing them achieved their distinct social and political status, and of what
exactly this entailed.

In terms of alloy composition, the vast majority of Muisca metal-
work has gold, silver and copper in detectable levels, although their
actual concentrations vary across a wide range, from native (argentifer-
ous) gold with negligible copper content through more mixed tumbaga
to almost pure copper. The silver in these alloys was an unintentional
element naturally present as an impurity in the gold that was not
manipulated for, bar the possible selection of native gold nuggets based
on their colour. Ranges in-between 0-37 wt% for silver content have
been found in compositional analyses of native Colombian gold (Uribe
Villegas and Martinén-Torres, 2012a), and there is no evidence of
parting technologies to refine the gold, or of silver extraction (Lleras
Pérez, 2015, 106). As gold does not naturally occur in the region
inhabited by the Muisca, this metal is thought to have been obtained
through war or barter from the peoples inhabiting the surrounds of the
Magdalena river (Lleras Pérez, 1999; Sdenz-Samper, 2021, 73) (located
in the metallogenic provinces 3b and 3c in Fig. 6A), or from the Guane
territory in the north (metallogenic provinces of 4a and 4b). Gold was
exchanged for hallucinogens, textiles, salt, and emeralds. Once within
the Muisca territory, it was brought to markets by intermediaries and
exchanged, for instance, for coca leaves or food (Langebaek, 1987,
88-92). Copper, on the other hand, is readily available as mineral
deposits in the Eastern Cordillera (Fig. 6B), although, with the potential
exception of native copper occurrences, the actual smelting of metal
from these deposits likely would have required more investment of
technology, time, and labour in comparison to gold (Lleras Pérez, 1999,
73).

While the social contexts of metalworking and consumption un-
doubtedly changed throughout their millennia of pre-Hispanic use,
radiocarbon dating has revealed some continuity of these practices
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Fig. 6. The locations of (A) gold ore sources and (B) copper ore sources throughout present-day Colombia, with the location of the Muisca region highlighted in the Eastern
Cordillera of Colombia. Metallogenic provinces from Arias Restrepo (2005b), originally taken from Mapa Metalogénico de Colombia escala 1:500.000 (INGEOMINAS, 2002); gold
ore sources digitised from Arias Restrepo (2005c¢) (who ranked them for probability of pre-Hispanic exploitation on a scale of 1-4 (low probability; medium probability; high
probability; very high probability); only those with medium probability or above are shown here, given that those ranked as low probability include, for instance, ore sources
of which there is no evidence on the earth’s surface, which need to be mined subterraneously, or which need chemical analysis to be detected, e.g., disseminated gold.), and
copper ore sources from a map courtesy of the Museo del Oro, Banco de la Reptblica, based on Arias Restrepo (2005a), Arias Restrepo (2005b), INGEOMINAS (2002), Lobo
Guerrero Arenas (2005). All of the digitisation of maps/data, as well as the drawing of maps itself, was done in QGIS v. 3.4.4 (QGIS Development Team, 2022) with the projection
Magna-Sirgas EPSG 4686. The hillshades on the maps are based on STRM data produced by NASA. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. (A) Selected examples of Muisca votive figures from different recovery locations. Votive offerings were typically deposited in sacred places such as water courses or
mountain tops, and at sanctuaries near settlements (Plazas and Falchetti, 1985; Londofio Laverde, 1996, 57). The “coffee-bean” style eyes are characteristic of the region’s votive
metalwork as well as in anthropomorphic representations in ceramic figures or vessels. Shown approximately to scale, artefact height varies from c. 16 to 5.4 cm. (B) Selected
Muisca adornments from different recovery locations shown as they may have been worn on an individual. Shown approximately to scale, artefact height varies from c. 15.4 to
8.5 cm. Compiled from individual images, image copyrights © Museo del Oro, Banco de la Reptiblica.

(see Uribe Villegas and Martinén-Torres (2012b) for a list of dates as- west and the north (Lleras Pérez, 1999; Plazas, 1998). Despite differ-
ences in how it was subsequently worked with, however, it is clear that
the use of imported gold played an important role for both classes of
metalwork. In 1587, the Spanish differentiated between two groups of

sociated with the metallurgy). Both classes of metalwork were adopted
early on into the Muisca period, and the votive figures or tunjos,

in particular, represent a unique and fairly internally coherent style
throughout their history of use. In comparison, the adornments share

more stylistic similarities with other metalworking traditions to the

goldworkers who respectively specialised in the production of votive
figures and adornments (Rojas, 1965 in Langebaek, 1987, 102-103),
which may or may not have corresponded to different approaches
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to metal procurement. It is difficult to tell, however, whether or not
such differentiation existed before the conquest or if the religious
persecution by the Spanish could have driven such divisions. This is
given that votive offerings were considered idolatry by the catholic
invaders (Uribe Villegas and Martinén-Torres, 2021, 163), whereas the
use of adornments was not.

Previous research has also tentatively revealed that the votive fig-
ures that comprised a single offering were typically made at the same
workshop, and even by the same artisans, using the same raw materi-
als and invariably cast using the lost-wax technique. It also appears
they were deposited soon after production, often still bearing dirt
from the mould, casting imperfections and/or feeders, with no fin-
ishing work conducted on them, suggesting they were not meant for
long-term social display (Falchetti, 1989; Lleras Pérez, 1999; Martin6n-
Torres and Uribe-Villegas, 2015a; Uribe Villegas and Martinén-Torres,
2012a; Uribe Villegas, 2012). The process of making the figurines, and
particularly the use of wax, is also argued to have played a highly
important symbolic role for the region’s inhabitants, perhaps being
part of the ritual itself (Martinén-Torres and Uribe-Villegas, 2015b).
In addition, sometimes raw materials or intermediate products, such
as gold nuggets, or melting ingots, were intentionally deposited in
these offerings (Martinén-Torres and Uribe-Villegas, 2015a). The votive
figures are typically fairly small in size (Falchetti, 1989, 4), although
a number of larger figures do exist, such as the internationally famous
Muisca raft (Uribe Villegas et al., 2021). While votive offerings were
thus likely practised by a large proportion of the society, variations in
the size of individual objects and composite offerings may suggest that
some people could amass larger quantities of metal for making particu-
lar offerings intended to fulfil their specific needs to communicate with
deities.

In contrast, adornments were often finished post-manufacture, with
casting sprues and funnels removed (Falchetti, 1989). Occasional re-
pairs and polished surfaces have also been detected (Lleras Pérez, 1999,
43; Martinén-Torres and Uribe-Villegas, 2015b, 382). Depletion gilding
was sometimes used to enhance the golden appearance of the metal, in
contrast to votive figures that only show evidence for enriched surface
layers as the result of occasional exposure to fire, corrosion, or modern
cleaning (Martinén-Torres and Uribe-Villegas, 2015a; Uribe Villegas,
2007; Vieri et al., 2020). In terms of size, the vast majority of the
adornments are small, with, for instance, the standardised lost-wax cast
beads that are highly typical of the region’s ornamentation generally
being less than three centimetres by maximum dimension (although
many such individual beads would have comprised a whole necklace);
object types other than beads typically being anywhere between 0—
10 cm in size. A smaller number of larger adornments, such as the types
of breastplates, ear and nose adornments shown in Fig. 7B are known.

Overall, little is still known about the range and types of gold
sources exploited for either, or about how gold circulated and ex-
changed hands throughout the region. Here, we show how our new
modelling tools allow us to consider the variability of gold sources em-
ployed in metal manufacture at different scales of analysis, in turn al-
lowing us to consider the broader contexts of Muisca gold manufacture
and consumption.

4.1. Data

The data used for modelling comprised both legacy data (n = 106)
and new analytical data (n = 132), adding up to a total of 243 object
compositions on both adornments and votive figures from 46 different
municipalities of recovery (Table S3). The compositionally analysed
objects include both archaeologically excavated ones, as well as those
obtained by the Museo del Oro and other museums through legal
purchases, which often lack precise site location data, but were often
sold together with information on their geographical place of origin
at the level of municipalities — see Ethics Statement, Supplementary
Material 2.1. The majority of the legacy data has been previously
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published in Uribe Villegas and Martinén-Torres (2012b) and largely
consists of chemical analyses conducted on items of archaeological
metalwork by researchers and their collaborators at the Museo del Oro
over the last decades,” with additional legacy data obtained from La
Niece (1998) and Rovira (1994). Additional data, published more
recently, was also included from Martinén-Torres and Uribe-Villegas
(2015a). A full list of legacy data sources is provided in Supplementary
Material S2.2.1. Only legacy data obtained by X-ray Fluorescence (XRF)
or portable X-ray Fluorescence (pXRF) was included in the modelling
to allow for better instrument comparability than if we were to include
analyses by other analytical methods such as the Fire Assay (FA)
analyses that are prevalent in earlier literature.

The other half of the dataset consists of new pXRF analyses col-
lected in January-February of 2022 at the premises of the Museo del
Oro in Bogota. All of the analyses were carried out with a portable
Niton™ XL3t Gold XRF Analyser, equipped with a gold X-ray tube
with an excitation potential of 50 kV. The analyses were conducted at
50 kV, with an acquisition time of 60 s, using a bespoke calibration,
designed and tested for the analysis of precious metal alloys in line
with the research objectives of the Museo del Oro by Lina Maria
Campos Quintero. An important benefit is that the analyses produced
by this study will have been carried out with the same instrument and
calibration as many of the more recent pXRF analyses undertaken at
the museum and included from the legacy data, allowing for excellent
cross-comparability between them. Full details of the sampling and
analytical procedures are reported in Supplementary Material S2.2.2.

The compositional dataset relates to the major alloying constituents
of the goldwork, given that the availability of trace element data for this
region is scarce at the present moment (but see: Martinén-Torres and
Uribe-Villegas, 2015a; Vieri et al., 2020). Nevertheless, the adoption
of the new tools that we have presented here allows the identification
of general trends in pre-Hispanic gold procurement practices, even if
based on major alloying constituents. This is because, as noted above,
the silver content of alloys was not artificially manipulated by the
Muisca. As such, the proportion of silver in gold (Ag-in-Au) is a broad
indicator of the geological composition of the native argentiferous gold
deposits used, accounting for the dilution effect on silver introduced by
any artificial copper additions. This ratio can be calculated as:

Ag(wt%)
Ag(wt%) + Au(wt%)

Since gold nuggets or ingots from several different geological sources
could be melted together, this proportion may also reflect contributions
from the variety of different sources used. In short, Ag-in-Au contents
are a broad indicator of either gold sourcing or the practices of mixing
different geological sources of gold, therefore opening up interest-
ing avenues for the discussion of metal procurement, movement, and
processing throughout the pre-Hispanic Eastern Cordillera.

Ag in Auw(wt%) = 4

4.2. Methods: model building

Following exploratory data analysis (see Supplementary Material
$2.3), the new methods were put into use in a beta regression model
with the Ag-in-Au ratios as the compositional response variable. We
modelled changes in these ratios as a function of both object type and
volume. This allowed us to assess whether different practices of metal
sourcing appear to have been adopted by their manufacturers, given the
potential existence of different groups of metalsmiths involved in their
production (Langebaek, 1987, 103). Volume, in turn, was included to
assess how raw material procurement needs were met or changed when

2 Museo del Oro is comprised of several branches, with its main premises in
Bogotd, and with other regional museums including; Museo del Oro Quimbaya,
Museo del Oro Narifio, Museo del Oro Calima, Museo del Oro Tairona, and
Museo del Oro Zent. All of the objects in these different branches have a
consolidated inventory managed from the main branch in Bogota.
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manufacturing larger objects. Given that all the gold used by the Muisca
had to be imported (Lleras Pérez, 1999; Sdenz-Samper, 2021, 73),
working with higher quantities of metal could have potentially involved
the recycling of other objects, combining gold from several different
geological sources, or the sourcing of gold from specific sources with
more abundant or voluminous occurrences of the native metal.

These predictors were introduced to both the linear model definition
of the mean response u and the model dispersion ¢, to respectively
account for changes in both Type 1 and 2 variability (cf. with Fig. 1 and
the methods introduced in Part I of this paper). Table S5 summarises
details of the chosen covariates. We then introduced a hierarchical level
into both the intercept and slope parameters in the linear definition
of u, to assess the regional heterogeneity or homogeneity of the gold
procurement practices, as well as to account for any biases arising from
varying sampling intensities for different artefact recovery locations
in the dataset (cf. with discussion of Type 3 variability in Part II and
the corresponding examples in Fig. 1). Given the scarcity of higher-
resolution spatial data, the basis for the hierarchical clusters was taken
to be at the level of municipality centroids, which are modern admin-
istrative divisions within present-day Colombia, intermediate in size
between localities and departments.

Supplementary Material 2.2.3 provides a detailed description of
the steps involved in data pre-processing prior to the model being
run. Against the background of navigating the bias-variance trade-
off in modelling applications, Supplementary Material S2.5 also pro-
vides details of formal model comparison with simpler models where
neither variable dispersion nor hierarchical structure in the data is
accounted for. This demonstrated that the newly developed methods
provided improved estimates compared to more traditional regression
approaches.

In adopting a Bayesian framework to modelling, we aimed to use
weakly informative priors, which allow for all possibilities that can be
deemed plausible on the outcome scale, whilst being more cautious
about extreme, unrealistic parameter values. The final mathematical
model definition, including details of these priors and summaries, is
provided in Supplementary Material 2.4.

4.2.1. Software and model code

The model was fitted using Stan (Stan Development Team, 2021b),
using the RStan package version 2.26.22 (Stan Development Team,
2021a) as an interface to communicate between Stan and R, with all
post-sampling analyses and graphs conducted in R v. 4.3.1 (R Core
Team, 2023), and using RStudio v. 2023.02.2 (RStudio Team, 2023).
A number of other R packages were used during the post-processing
stage, including shinystan (Gabry and Veen, 2022) and xtable (Dahl
et al,, 2019) to create tables of posterior summary statistics. The
source codes corresponding to these model definitions are available
on the GitHub repository, and different parts of the model codes took
inspiration from Clark (2022), Hipson (2022), McElreath (2020), Stan
Development Team (2021a). We ran four chains and 3000 iterations
per chain, out of which 1000 each were dedicated to warmup, meaning
a total of 8000 iterations after warmup across all four chains. Good
convergence between the chains was reached (Rhat < 1.01), with bulk
and tail effective sample sizes deemed sufficient for the resolution of
this study (Bulk ESS and Tail ESS min. > 200 X no. of chains) per
parameter. Test runs with more iterations were found not to change
the variance of the model estimates to a notable degree.

4.3. Results

The model outputs do not show clear evidence of a correlation
between the average expected silver-in-gold ratios and object volume,
nor do they suggest a differentiation between adornments and votive
figures (§, and p;, Table 1; Fig. 8A). This suggests either that (A) the
sources of gold were fairly similar for different-sized objects of both
classes on average, or that (B) the sample size is not sufficient to tell
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apart any differences in the overall tendencies. Hence, the structure
in the dataset cannot presently be explained by Type 1 variability (cf.
Fig. 1).

The 95% Posterior Interval (PI) for the linear submodel for ¢,
however, does not overlap with 0, showing a clear signal for reduced
dispersion (Type 2 variability) of the Ag-in-Au ratios as a function of
object volume (y,, Table 1, Fig. 8B). Increased dispersion of votive
figures at baseline volume when compared to adornments was also
observed (y;, Table 1).

Importantly, the predicted ranges of Ag-in-Au ratios further show
notable variations between municipalities, particularly in the case of
the votive figures. This is evidenced by the posteriors of the parameters
6, and o,3, in Table 1, which capture Type 2 variability across
different recovery locations for the adornments (the baseline category)
and for the votive figures, respectively. While the prediction intervals
remain wide for many of the individual recovery locations, the votive
figures deviate towards more unusual values more, ranging from c. 11%
at its lowest, to c. 28wt% at its highest, on average (Fig. 9).

In contrast, there is more consistency in the compositional ratios
of adornments across the different municipalities.® The municipality
of Colombia deviates the most from the typical Ag-in-Au ratios of
~16wt%.* Other than this, the predicted Ag-in-Au ratios of adornments
consistently take on values in between the whole range of variability
observed in votive figures, although there are still some fluctuations
across a more restricted range of compositions.

Artefact volume, in contrast, was found to have a limited impact
on compositional variation across municipalities (s,,, in Table 1), sug-
gesting that the patterns detected globally also apply at the local level,
with object size thus being a poor predictor of the average Ag-in-Au
ratio both in terms of Type 1 as well as Type 3 variability.

4.3.1. Muisca gold and internal exchange networks

As shown by both the globally predicted Ag-in-Au ratios (Fig. 8A),
and by the expected compositions at the municipal level (Fig. 9), it
seems likely that similar sources of gold were often exploited for both
object classes. The high levels of compositional variability observed
for votive figures across municipalities (Fig. 9B), in turn, can be used
to suggest that gold from several different geological sources were
used throughout the region, which highlights the extent of Muisca
exchange networks. This also suggests that, in some cases at least,
different geological deposits of gold were not mixed, preserving the
more extreme compositional signatures, and potentially pointing to the
sourcing of fresh rather than mixed or recycled gold in such cases. The
signature observed for overall increased variability of votive figures
on the global scale (y; in Table 1) further provides support to this
hypothesis, which should be verified with further data collection and
analyses. The geological sources that are likely to have contributed
to this variability include those to the Magdalena River valley to the
west, and potentially towards the other peripheries of the Muisca region
(Fig. 6). In the future, geological compositional data will be able to
aid in understanding which of these sources are likely to have been
exploited in the past.

Having said that, many of the recovery locations for votive figures
also showed compositions that fall more towards the regional average
(Fig. 9). While this may simply reflect that more gold sources are likely
to fall in that compositional range, it could suggest the dilution of

3 This applies even when considering the smaller sample size of the
votive figures when compared to the adornments (Table S3). While in a
non-hierarchical model, smaller sample sizes are often associated with more
variability, the hierarchical modelling approach adopted here has allowed for
accounting for sample imbalance as a source of uncertainty through the process
of adaptive shrinking, as per the discussion in Part II in this paper.

4 This municipality is represented by objects pertaining to the Complex
Western Style rather than the core Muisca style. This makes them unusual
on the global scale by their contextual and stylistic traits.
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Table 1

Posterior summaries of the parameters returned by the hierarchical variable dispersion beta regression used for modelling Muisca goldwork Ag-in-Au ratios, including mean estimates
(mean), standard deviations (sd), the 95% prediction intervals, the number of effective samples (n_eff), as well as Rhat values reflecting the convergence of the chains). The g
parameters capture changes in the average silver-in-gold ratios (Type 1 variability); the y parameters variation in the compositional dispersions (Type 2 variability); and the o,
parameters capture between-cluster variance (Type 3 variability), i.e., in this case, how much variation can be explained across different municipalities of recovery as a function
of each of the predictors.

Predictor Parameter mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
Intercept (adornment) b -0.42 0.06 -0.54 -0.46 -0.42 -0.38 -0.30 3498 1.00
Volume (per 1.24 cm?®) b -0.07 0.06 -0.19 -0.11 -0.07 -0.03 0.04 3378 1.00
Object type (votive) b3 0.18 0.13 —0.06 0.10 0.18 0.26 0.43 5060 1.00
Intercept (adornment) 7 3.27 0.13 3.02 3.19 3.27 3.36 3.51 3497 1.00
Volume (per 1.24 cm®) 72 0.35 0.14 0.07 0.26 0.35 0.45 0.63 4413 1.00
Object type (votive) 73 -0.64 0.26 -1.15 —0.82 —0.63 —0.46 -0.14 4054 1.00
Intercept (adornment) Cpunt 0.22 0.07 0.09 0.17 0.22 0.26 0.36 1684 1.00
Volume (per 1.24 cm®) o 0.22 0.09 0.04 0.16 0.21 0.28 0.42 1071 1.00
Object type (votive) [ 0.47 0.17 0.14 0.36 0.47 0.58 0.83 1147 1.00
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Fig. 8. (A) Posterior predictions for the average Ag-in-Au ratios (u) at different object volumes, with the green line referring to the mean predictions for adornments, and the red
line to the mean predictions for votive figures. Corresponding 95% PI intervals are also shown as shaded. (B) Posterior predictions for the standard deviations of the Ag-in-Au ratios
(SD) at different object volumes, with the green line referring to the mean predictions for adornments, and the red line to the mean predictions for votive figures. Corresponding
95% PI intervals are also shown as shaded. We report the standard deviations (calculated based on the model variance (Eq. (2)), with both ¢ and u indexed according to each
sample i as in Eq. (3)), instead of the changes in the dispersion parameter directly, to allow for a more intuitive interpretation of the results on the compositional scale. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Predicted Ag-in-Au ratios for different municipalities for (A) adornments and (B) votive figures. The colours reflect the municipality of recovery, and the y-axis shows
the Ag-in-Au predictions as proportions. The dark lines represent the 50% PI intervals, with the dashed lighter lines corresponding to 95% intervals. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

extreme Ag-in-Au contents through mixing, in some cases at least. Such or mixing practices (Fig. 9), these are typically less extreme compared
dilution can be expected to reflect either (a) the combination of raw to votive figures, with the Ag-in-Au ratios of adornments consistently
gold from different sources to make a conglomerate batch, or (b) the taking on values in a narrower bracket contained within the whole
mixing through recycling of other objects. In adornment manufacture, range of variability observed in votive figures (except for Colombia —
while some municipal variations were detected in the gold sourcing see footnote 4). As such, either the range of gold sources employed
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for adornments was more constrained, or the different sources were
subsequently mixed more often, resulting in the dilution of the more
extreme compositional signatures. Although these differences could
also be explained by temporal differences in the raw material procure-
ment practices, rather than differences across the two object classes,
contextual evidence suggests that votive figures, at least, represent a
fairly unique and consistent tradition throughout their history of use.

Finally, the proposed practices of gold mixing were found to be
even more extensive for the larger objects represented by the dataset
on the global scale. This is given that the compositions of larger objects
both concentrate around similar mean predictions as for smaller-volume
objects (Fig. 8A), and that there is significantly reduced compositional
dispersion of Muisca goldwork towards higher volumes on the global
scale (Fig. 8B). The manufacture of larger objects would have required
more raw material in comparison to most of the objects, which are
typically less than 1 cm? in size (~71% for votive figures, and ~73%
for adornments, in this dataset).

For the adornments, these dilutional patterns may be explained by
recycling. The adornments did not play the same ritual and religious
role as the votive ones. They also appear to also have had longer life his-
tories, with evidence for finishing post-manufacture and repairs (Lleras
Pérez, 1999, 43; Martinén-Torres and Uribe-Villegas, 2015b, 382), as
well as for generational gifting (Langebaek, 2003, 264).

However, recycling is less likely to have been less socially permis-
sible in the case of the votive figures. First, these were deposited soon
after production in sacred places such as water courses of mountain
tops (Plazas and Falchetti, 1985, 57), or at sanctuaries (Londofio
Laverde, 1996), where they are fairly unlikely to have been disturbed
by the recollection of the metal. Additionally, raw materials and
processes of transformation have been argued to be ritually impor-
tant in votive figure manufacture (Martinon-Torres and Uribe-Villegas,
2015a,b), which again makes the use of recycled gold less likely.
Rather, the fact that the Ag-in-Au for larger objects tends to converge
around the Muisca average could imply that gold from different geo-
logical sources was brought to the goldworkers at the time the offering
was made, or obtained as part of a ritual economy network, and their
mixing during manufacture may have been part of the ritual itself.

The more sizeable Muisca goldwork offerings were likely commis-
sioned and mediated by chiefs, religious specialists or other individuals
who were able to amass larger quantities of metal in order to communi-
cate with the deities on behalf of the community; their deposition may
have taken place as part of larger festivities attended by a multitude
of people, sometimes including chiefs or others from different parts
of the region. This ritual mobility and exchange of gold could have,
subsequently, resulted in even more extensive dilution of the whole
range of compositional sources available throughout the region towards
the middle.

Interestingly, if we now revisit how gold was introduced into the
Muisca markets, Langebaek (1987, 151; 2019) has argued that sub-
sistence goods played a limited role in market exchange and that
economic activities were highly intertwined with religious and political
ones. Marketplaces were used to host festivities that could last for days,
during which leaders redistributed goods to their community. Markets
are also argued to have served the role of “ethnic integration”, as
they could be attended by people from different polities. It is then
conceivable that different sources of gold were sometimes brought
into these communal gatherings, because the people who attended the
festivities came from polities that had access to different exchange
networks, bringing the gold with them. These different sources were
subsequently used in making the offerings that were to be deposited at
the end of the festivities.

The above scenario is supported by the evidence from Tocancipa -
one of the few votive goldwork offerings for which trace element data
are available. Here, all the objects are small, but they represent a range
of types: natural nuggets, small ingots, and anthropomorphic figurines.
The elemental analyses show distinct groupings that are consistent
with a variety of sources or metal batches (Martinén-Torres and Uribe-
Villegas, 2015a), in what might represent a concrete demonstration of
the broader pattern inferred from the data modelling approach.
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5. Discussion

We have shown that statistical models based on the beta distribution
provide more robust and accurate means to analyse compositional
data in archaeology. In contrast to the more established reliance on
log-transformations, our approach restricts predictions to the standard
unit interval (0, 1), allowing at the same time to account or event
model heteroscedasticity (Ferrari and Cribari-Neto, 2004). While log-
transformation approaches may be still viable where the data follow
a log-normal or normal distribution — mainly likely to occur when
the metal in the assemblage was obtained from an individual geo-
logical source (Baxter, 1995, 515) —, it is frequently an insufficient
approach to dealing with the challenges introduced by the composi-
tional constraint. In particular, within archaeometallurgy, artificially
manipulated alloying constituents often have highly skewed profiles.
Similarly, while working with Gaussian models on non-transformed
data can be successful where the element of concern displays limited
variance relative to its central tendency (therefore not even necessi-
tating log-transformations), this often does not apply to manipulated
constituents that can take on values over a wide range.

Indeed, as was shown here, traditional models based on the Gaus-
sian distribution both on non-transformed and log-transformed data
risk yielding predictions that exceed either both (e.g., Owt% and
100wt%), or the upper compositional constraint, respectively. More-
over, even where log-transformation successfully alleviates skewness in
the data, it was shown to incorrectly assume that the model variance is
constant on the log-transformed scale. This can result in highly biased
estimates of model variance when back-transformed to the composi-
tional scale (Fig. 3). It can similarly be insufficient when working with
compositional signatures that reflect unintentional impurities where,
e.g., the recycling of metals with highly different impurity profiles
has occurred at varying rates. The validity of the log-transformation
approach needs to be assessed on a case-by-casis (Baxter, 1995, 515).
The beta regression approach, in turn, was shown to readily apply
to both cases of skewed and non-skewed compositional data, given it
accommodates a multitude of distributional shapes (Fig. 2).

We thus propose that the beta regression approach should be
adopted as the standard approach to working with univariate compo-
sitional responses within the field, such as in our case study of Muisca
Ag-in-Au ratios. Examples of future applications in craft production
studies beyond archaeometallurgy could include understanding the use
of a specific colourant in vitreous materials, or the study of processes
involving the manipulation of clay recipes in ceramic technological
studies, with a focus on a single compound that is likely to mainly
represent contributions from a particular temper, or lack thereof.
The approach is similarly applicable to other sub-disciplines of the
archaeological sciences making use of compositional data, such as
stable isotope analyses.

In many archaeological applications, of course, it is more accurate
to consider multiple compositional constituents simultaneously. For
instance, the use of a single raw material may need to be assessed
in relation to the importance of more than one other one. The same
applies to provenance studies concerned with trace element data, which
are typically informative only when concerned with more than one
element. While others have argued for the use of log-ratios (Aitchison,
1982), the challenges arising from such transformations, e.g., incorrect
estimates of the model variance, also apply to such multivariate appli-
cations. They further result in the loss of the original data scale, which
cannot be readily reconstructed, unlike in the case of the univariate
log-transformation. We propose that developing multivariate Dirichlet-
distributed responses — of which, in fact, the beta distribution is a
special univariate case of — is more appropriate (Maier, 2014). Their
adoption would allow for discussions of the underlying drivers of
different choices made by craftproducers, where the impact of such
drivers is simultaneously assessed against more than two compositional
constituents. Such applications could have immense potential, e.g., in
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the systematic examination of different impurity profiles in different
archaeological assemblages, as part of more in-depth procurement
studies.

We have further added to the toolkit of the data analyst within the
archaeological sciences, not only in terms of providing a statistically
more robust solution to working with compositional data, but also by
providing two new ways of thinking about and modelling composi-
tional variability in craft production studies. One of these (variable
dispersion submodels) allows us to consider how broader social con-
texts operate to result in more or less constrained craft production
practices at the assemblage level (Type 2 variability in Fig. 1). The
other (multilevel modelling) accounts for the local nuance of human
practices and the uncertainty arising from varying sampling intensities
in large-scale craft production studies (Type 3 variability). Although
not explored in this paper, by drawing upon both of the approaches,
researchers could additionally model how compositional dispersions
vary at the local and supra-local levels concurrently, therefore shedding
light on processes of standardisation at different scales of analysis (Type
4 variability). Future researchers can choose to adopt each of the newly
introduced approaches independently or combine them in the same
model as appropriate for their research.

Both hypothetical examples and the Muisca case study were used to
demonstrate how modelling these sources of variability can be readily
incorporated into the beta regression framework. For instance, the
significantly reduced dispersion of Muisca goldwork Ag-in-Au ratios
towards higher object volumes (Fig. 8B), combined with the inferences
regarding relatively consistent object compositions on the global scale
(Fig. 8A), allowed us to postulate that these reflect dilutional patterns.
We suggested this could result from the combination of multiple sources
of gold in votive figure manufacture and plausibly either that or the
recycling of materials in the case of the adornments. In contrast, had
we focused on compositional averages alone, the results would have im-
plied a false sense of continuity in raw material procurement practices
across all object volumes, in addition to providing biased estimates of
the other model parameters. From a theoretical point of view, it would
naturally still be preferable to access information on the actual data-
generating processes contributing to the variation in the compositional
averages alone — e.g., within the context of this case study, which
geological sources were exploited throughout the Muisca region in
the first place, which of the constituent sources were subsequently
mixed, for objects of which size, and at which points through time. This
would allow us to eliminate or minimise the compositional dispersions
in the model outputs. In the inevitable absence of such information
within archaeology, however, the variable dispersion approach has
been shown to provide a tool that indirectly provides cues on what can
possibly explain the structure of the variability in the observed data.

The general principle of directly modelling variance as an archae-
ological source of information is also similarly applicable to multi-
variate Dirichlet-distributed responses of compositional data, and to
non-compositional data, e.g. in linear models making use of the Gaus-
sian distribution or in other classes of GLMs. For instance, it could
be used to test whether the intra-assemblage variability of projectile
point metrics varies over time, relating to, e.g., different levels of
prestige-based or conformist cultural transmission, as in the case studies
explored through CVs by Eerkens and Lipo (2005).

Notably, had we further ignored shared influences across different
recovery locations, we would not have been able to infer that Muisca
gold procurement practices varied more between different recovery
locations for the object class of votive figures than they did for adorn-
ments (Figs. 9). We would have thus not been able to hypothesise
that gold circulated from several different sources to different parts of
the Muisca region and were possibly sometimes employed in votive
figure manufacture in its raw geological form; and to hypothesise
that, in the case of the votive figures, the diluted metal employed
in larger object manufacture (as detected based on changes in the
compositional dispersions discussed above) was likely mixed shortly
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before deposition. The multilevel modelling was key for providing
support to this hypothesis, which is also backed by the contextual and
historical evidence on their transient nature of production (Falchetti,
1989; Lleras Pérez, 1999; Martin6n-Torres and Uribe-Villegas, 2015a).
While a non-hierarchical variable dispersion model would have still
suggested higher dispersion of votive figure compositions compared to
adornments, it would have had no means of differentiating whether
such variability arose from people consistently using varied sources
of gold for votive figure manufacture when depositing offerings, or
whether specific locations had different tendencies in this regard.

Ultimately, therefore, multilevel modelling explicitly allowed us to
infer how Muisca metal procurement practices operated on local and
supra-local scales concurrently, providing grounds to potentially high-
light local nuance in metalworking practices. Simultaneously, the bias
introduced by sampling imbalance was explicitly addressed through
the process of partial pooling, which assessed the probability that any
extreme observations at poorly sampled locations were so unusual as to
warrant us to be cautious of the observed signatures, resulting in less
extreme compositional predictions than those empirically observed.

In the future, the beta regression toolkit could further be improved
with, for instance, methods that further account for sample interdepen-
dence across dimensions such as time and space. This is given that the
processes that lead to the formation of the archaeological record also
operate spatially and temporally, i.e. they are likely to share more sim-
ilarities when closer in time or space to one another. In the case of the
spatial dimension, we propose this could be achieved by adopting either
Intrinsic Auto-Regressive Models for Areal Data (ICAR) (Besag, 1974;
Besag and Kooperberg, 1995) model specifications, in particular when
working with polygon data, or by Gaussian Process models (Rasmussen
and Williams, 2005), when working with spatial data at the scale of
localities. The latter would also be readily applicable to modelling
continuous sample interdependence through time.

6. Conclusion

Beta regression should be adopted as the new standard approach
to treating compositional data within the field of the archaeologi-
cal sciences. It provides probabilistic insights into the drivers of the
four main different types of variability expected in compositional ar-
chaeological datasets, at different scales of analysis, ranging from the
local to the global. Compared to established approaches such as log-
transformations, it simultaneously provides more statistically robust
inferences. Modelling variable dispersion, i.e., modelling the amount of
unexplained variation in our datasets as a function of covariates, was
further shown to provide unprecedented insights into the broader social
contexts of metallurgical production. Introducing hierarchical levels
into the beta regression framework, in turn, has been demonstrated to
re-introduce local variation into regional-scale reconstructions, whilst
accounting for the inherent sampling uncertainties that are present
within the archaeological record.

Importantly, the application of these two novel approaches has
further highlighted that the chemical compositions of archaeological
artefacts do, in fact, have more to offer than only the desired perfor-
mance characteristics targeted by metalsmiths. By solely focusing com-
positional data analysis either on provenance or on what constitutes
desirable performance characteristics, archaeological craft production
studies fail to account for a wealth of information on how broader
societal processes shape aspects of past craft production activities. In
particular, Muisca metal procurement practices had little to do with
individual decision-making processes on optimising the performance
characteristics of their metalwork. Neither did our most important
inferences regarding the social contexts of metallurgical production
arise from pinpointing the exact locations of the geological ore sources
employed in metal manufacture. Rather, the varying levels of disper-
sion witnessed in metal compositions can be a source of information
in itself, regardless of which exact environmental, technological, or
cultural factors drove the decision-making of craftspeople in the first
place.
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