
Journal of Archaeological Science 165 (2024) 105962

0305-4403/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modelling diffusion of innovation curves using radiocarbon data 

E.R. Crema a,b,*, A. Bloxam c, C.J. Stevens b, M. Vander Linden b,d 

a Department of Archaeology, University of Cambridge, CB2 3DZ, UK 
b McDonald Institute for Archaeological Research, University of Cambridge, CB2 3ER, UK 
c Department of Classics and Archaeology, University of Nottingham, NG7 2RD, UK 
d Institute for the Modelling of Socio-Environmental Transitions, Bournemouth University, BH12 5BB, UK   

A R T I C L E  I N F O   

Keywords: 
Bayesian inference 
Radiocarbon dating 
Diffusion of innovation 
Origins of farming 
Burial customs 
Japan 
Great Britain 

A B S T R A C T   

Archaeological data provide a potential to investigate the diffusion of technological and cultural traits. However, 
much of this research agenda currently needs more formal quantitative methods to address small sample sizes 
and chronological uncertainty. This paper introduces a novel Bayesian framework for inferring the shape of 
diffusion curves using radiocarbon data associated with the presence/absence of a particular innovation. We 
developed two distinct approaches: 1) a hierarchical model that enables the fitting of an s-shaped diffusion curve 
whilst accounting for inter-site variations in the probability of sampling the innovation itself, and 2) a non- 
parametric model that can estimate the changing proportion of the innovation across user-defined time- 
blocks. The robustness of the two approaches was first tested against simulated datasets and then applied to 
investigate three case studies, the first pair on the diffusion of farming in prehistoric Japan and Britain and the 
third on cycles of changes in the burial practices of later prehistoric Britain.   

1. Introduction 

The investigation of how and why a particular idea or technology 
spreads among a population is undoubtedly one of the most interdisci-
plinary research themes within the social sciences, with methodological 
and theoretical contributions spanning fields such as economics, ecol-
ogy, sociology, and cultural evolutionary science (Bass, 1969; Henrich, 
2001; Hoppitt et al., 2010; Lengyel et al., 2020; Manzo et al., 2018; 
Reader, 2004; Rogers, 2003; Steele, 2009). Much of the theoretical basis 
of the diffusion of innovation (DOI) literature shares some common 
ideas and concepts, most notably how the rate of diffusion of a particular 
product is the cumulative consequence of individual attitudes and pro-
pensity towards the innovation itself. 

The seminal work by Rogers (1962;2003), has highlighted how time- 
series graphs portraying the proportion of adopters over time (known as 
diffusion curves) show surprising regularity, forming a characteristic s- 
shaped curve indicative of similar underlying processes across a wide 
range of technological adoption. Features of diffusion curves have sub-
sequently been investigated through formal models and empirical 
studies to infer individual-level processes of cultural transmission from 
population-level data. For example, several studies have theorised and 
observed that s-shaped curves result from social learning, but when the 

spread of the innovation is the result of independent individual learning 
processes, diffusion curves can take an r-shape, without a slow growth 
stage during the early stages of a spread (Henrich, 2001; Hoppitt et al., 
2010; Reader, 2004). More sophisticated cultural transmission models 
have also incorporated the impact of different modes of cultural trans-
mission (Henrich, 2001), task structure (Hoppitt et al., 2010), outgroup 
aversion (Smaldino et al., 2017), and geography (Lengyel et al., 2020). 

Empirical studies of diffusion curves have often benefited from large 
datasets, in some cases sufficiently large to let scholars fit mathematical 
models to proportions or abundance data over time bins (e.g. Grasman 
and Kornelis, 2019), rather than directly to individual binary observa-
tions (i.e. whether a particular individual has or does not have the 
innovation). The range of mathematical models fitted to these empirical 
datasets has grown considerably since Rogers’ work, especially in eco-
nomics where these models are routinely used for forecasting or to 
evaluate the success of particular marketing strategies (Meade and 
Islam, 2006). 

Archaeological contribution to this rich literature is somewhat more 
limited despite the opportunity to investigate a wider range of dynamics, 
such as slow adoption occurring over multiple generations or diffusion 
events driven primarily by a higher growth rate of migrant populations 
carrying the novel trait rather than its adoption by an incumbent 
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population. More generally, the archaeological record offers a wider 
range of case studies involving different products and populations. One 
can speculate that this lack of interest is at least partly derived from the 
limitations of the archaeological record itself, which hinders the direct 
application and borrowing of specific techniques from sister disciplines. 
While in most social sciences reliable time series of the proportion of 
adopters are readily available, most archaeological data are represented 
by indirect proxy variables in small samples, and often characterised by 
a substantial degree of chronological uncertainty. Indeed, in rare in-
stances where these issues are less prominent and historical data are 
available, archaeological research does provide relevant contributions 
to the DOI literature (e.g. Amati et al., 2019; Scholnick, 2012). 

The primary objective of DOI research is to estimate how changes in 
the proportion or abundance of a particular cultural innovation changes 
as a function of time, and possibly other factors. More formally we have 

pθ = f (θ) [1]  

where the pθ is the observed proportion of the innovation at time θ, and f 
(θ) is some function of time defining the shape of the diffusion curve. 
When dealing with small sample sizes, empirically observed values of pθ 
are however going to fluctuate randomly due to sampling error. Thus, a 
better approach would be to estimate the probability that a given 
observation of a particular calendar age is associated with the old or new 
cultural variant. Thus, a more appropriate objective is to calculate the 
probability P(x = 1|θ = t), where x is the state of the observation (x =
0 old variant, x = 1 new variant) and θ is its calendar date. Using a 
probabilistic annotation, we have now: 

xi ∼ Bernoulli(pi) [2]  

pi = f (θi) [3]  

where the probability pi of the sample i being in state 1 is given by some 
function of time f(θi). While DOI research has predominantly dealt with 
equation [1], we argue that equations [2] and [3] are better suited to 
account for the small sample sizes that characterise most archaeological 
datasets. 

At its worst, archaeological data provides information about only the 
abundance of a given technology. In other words all samples have state 
x = 1, and hence changes in the frequencies can be assumed to be 
proportional to p only under a constant denominator i.e. stable popu-
lation sizes and rates of production (e.g. Eerkens and Lipo, 2014). In 
some cases, it is possible to obtain sample proportions (e.g. ,the relative 
proportion of hand-built vs wheel-made ceramic; de Groot and Bloxam, 
2022) which are more direct proxies of p. However, proportion estimates 
will inevitably be affected by sampling error unless a large number of 
observations are available. Both abundance and proportion data are also 
subject to the inevitable restrictions imposed by chronology. Archaeo-
logical assemblages could be time-averaged, and individual artefacts are 
rarely associated with precise and accurate time stamps. The conse-
quence of these limitations is that modelling or even graphically dis-
playing diffusion curves from archaeological data represents a 
considerable challenge. 

While issues pertaining to the type of data (abundance vs. propor-
tion) or the representativeness of the proxy variable is contingent on the 
specific context being investigated, the limitations dictated by chro-
nology are universal for the majority of the archaeological record. 
However, recent interest in the collation of large datasets of radiocarbon 
dates (e.g. ,Bird et al., 2022), often with sample sizes over four and five 
digits, provides a possible avenue for pursuing DOI research in archae-
ology, with a comparatively reliable chronology (e.g. ,Bevan et al., 
2017; Bloxam and Parker Pearson, 2022; Buchanan et al., 2022; de 
Groot and Bloxam, 2022; Schmid, 2020; Stevens and Fuller, 2012). 

Initial exploration of this area of research has benefited from meth-
odological developments designed to analyse large collections of 
radiocarbon dates, most typically to infer past population changes 

through the so-called dates as data approach (Crema, 2022a; Rick, 
1987). In their simplest form, DOI curves have been approached by 
visualising abundance or proportion data via summed probability dis-
tribution of radiocarbon dates (de Groot and Bloxam, 2022; Stevens and 
Fuller, 2012) and OxCal’s Kernel Density Estimate Models (Capuzzo 
et al., 2020). Neither approach is ideal. 

SPDs are easy to generate and can visually represent changes in both 
abundance and proportion. However, in its most common form, the 
visual interpretation of SPDs can be problematic, as observed changes 
can be simply the result of sampling error and in the case of abundance 
data, the result of the calibration process (Carleton and Groucutt, 2020; 
Crema, 2022a). More sophisticated techniques have been proposed in 
order to attempt to address some of these issues, for example by 
generating a confidence interval using bootstrapping or examining 
whether and when the relative proportion of an innovation changed via 
permutations tests (Bevan et al., 2017; Bloxam and Parker Pearson, 
2022; Stevens et al., 2022). In the case of abundance data, OxCal’s KDE 
(Bronk Ramsey, 2017) offers substantial improvement over visual in-
spections of SPDs, providing more robust solutions for visualising the 
uncertainty of sampling error and calibration effects. Nevertheless, its 
application is limited to smaller datasets due to its heavy computational 
requirements, and it currently does not allow for the visualisation of 
proportion data. 

This paper introduces a new set of Bayesian inferential tools which 
are designed to analyse DOI using radiocarbon data, but which are not 
based on SPDs The approach we propose can be broadly applied and 
extended to any proportion data based on 14C dates, but here we focus 
on two challenges: 1) heterogeneity in sampling practices across 
archaeological sites; and 2) diffusion dynamics that do not follow s- 
shaped curves. We test the robustness of our approach via simulated 
datasets and two sets of case studies: 1) the diffusion of agriculture in 
Britain and Japan (case studies 1a and 1b) and 2) cyclical changes in 
burial practices in later prehistoric Britain (case study 2). Section 2 will 
introduce the statistical framework we propose; section 3 will summa-
rise contextual details of the three case studies; section 4 will provide 
details of material and the implementation of the methods; section 5 will 
briefly summarise the results; and section 6 will provide a discussion on 
the methodological and contextual relevance of our analyses. 

2. Modelling diffusion curves from radiocarbon dates 

As noted in the previous section, our key inferential goal is to model 
changes in the probability p of a sample i being associated with an 
innovation as a function of calendar time θi (see equation [3]). In the 
case that our sample is a radiocarbon date, we need to account for the 
fact that θi is associated with some random and systematic measurement 
error, and as such, can be modelled as follows: 

yi ∼ Normal(c(θi), σi) [4]  

Where yi is the radiocarbon age of the sample i, c(θi) is the radiocarbon 
age of the θi, and σi is the square root of the sum of the squares of the 
sample 14C age error and the corresponding error in the calibration 
curve. 

The combination of equations [2] to [4] provides the basic frame-
work of the method proposed here. While a number of diffusion curve 
models have been suggested in the literature, here we take f(θi) to be 
simple sigmoid function: 

pi =
1

1 + e− (β0+β1θ) [5]  

In this case, equation [5] is effectively just a logistic regression with an 
independent variable θi and coefficients β0 and β1. 
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2.1. Hierarchical model 

Equation [5] describes the change over time of the probability p as a 
sigmoid function, with the steepness of the diffusion captured by the 
parameter β1. More importantly, the model assumes that the rate of 
change of p increases as it approaches p = 0.5, and decreases as p gets 
closer to 1, capturing the frequency dependence characteristic of diffu-
sion curves (Rogers, 2003). While this is a desirable feature in many 
situations, the two examples from our first case study will illustrate a 
typical situation where equation [5] might not be appropriate. 

In the case of the diffusion of farming (see section 3.1 below), x =
0 implies that the sample is not associated with the cultivation of a 
particular crop, whilst x = 1 indicates the opposite. Establishing the 
clear presence (or absence) of farming is, however, not always trivial, 
particularly during its early stages of diffusion. The problem is further 
exacerbated by the fact that, ideally, we would like to have a direct link 
between our dated sample and the new subsistence practice rather than 
an indirect link based on stratigraphic association. A practical solution 
to this is to consider only direct dates from seeds, where x = 1 indicates 
that the sample is the domesticate (i.e. rice for Japan and wheat or 
barley for Britain, see below), and x = 0 indicates that the sample is not 
the domesticate of interest (e.g. wild nuts). In other words, p becomes 
the relative proportion of the domesticates to the combination of do-
mesticates and non-domesticates. 

This solution, however, raises two issues. Firstly, there is no reason to 
believe that crops fully replace wild plants. Indeed, most typically, we 
should expect to observe wild plants even after the introduction of 
farming, particularly during its early stages (Stevens et al., 2022). Sec-
ondly, a number of factors associated with different combinations of 
taphonomy and sampling design might lead to a situation where the 
radiocarbon date from a farming context might be from a wild plant. 
There are numerical consequences arising from these potential issues. 
Even if genuinely random samples are available, the proportion p of 
domesticates might plateau to values lower than 1 after the full diffusion 
of agriculture. For convenience, we will refer to the equilibrium value 
reached by p as k, with 0 < k <1. Furthermore, the probability of dating 
a sample from a domesticate when this is present in an archaeological 
assemblage is likely to be lower than 1 and different between archaeo-
logical sites. The net implication is that for given calendar time θ, we are 
likely going to have greater variability in the character state of x due to 
overdispersion. 

A possible resolution to both these problems can be achieved by 
using the following hierarchical model: 

pi,j =
kj

1 + er(θi,j − m)
[6]  

kj ∼ Beta(γ1, γ2) [7]  

γ1 = μφ + 1 [8]  

γ2 =(1 − μ)φ + 1 [9]  

Equation [6] is also a sigmoid function, but with a range between 0 and 
kj instead of 0 and 1. Furthermore, each site j has its own upper bound kj, 
with the intersite variability of this parameter modelled using a Beta 
distribution with shape parameters γ1 and γ2. These are, in turn, defined 
by a mode μ and a concentration parameter φ. In particular, equations 
[8] and [9] ensure that when φ = 0, kj is uniformly distributed between 
0 and 1. The parameters r and m are just a reparameterisation of β0 and 
β1 from equation [5], and indicate respectively the rate of diffusion and 
the time (in years BP) at which pi,j is equal to kj/2. 

The hierarchical model described above effectively accounts for any 
inter-site variation in the probability of dating a domesticate rather than 
a non-domesticate, while simultaneously modelling the general rate of 
diffusion of agriculture. The model does not distinguish whether this 

source variation is related to taphonomy, sampling practices, or genuine 
differences in the proportion of domesticates across sites. It is worth 
noting, however, that putative covariates that might explain this vari-
ation can be included in equation [6] with their own set of parameters. 

2.2. Accounting for fluctuations in the diffusion curve 

Equations [5] and [6] describe an s-shaped monotonic diffusion 
process. The spread of a particular cultural or technological trait might, 
however, be characterised by temporary episodes of reversion, or even 
repeated cycles where the relationship between p and θ can take a wide 
range of shapes (see section 3.2 below). 

There are two possible ways to approach any deviations from an s- 
shape diffusion curve. The first consists of fitting equation [6] to the 
empirical data, and then to evaluate the goodness of fit to the observed 
data through posterior predictive checks. In the case of radiocarbon 
data, this effectively 

Consists of first creating an empirical proportion SPD. This can be 
generated by calculating, for each calendar year, the ratio between the 
summed probability of samples with x = 1 and the summed probability 
of all samples. The same calculation can then be carried out for the fitted 
model. In this case we first randomly re-assign a new value to xi,j for each 
radiocarbon date i at site j with probabilities 1-pi,j (for xi,j = 0) and pi,j 
(for xi,j = 1) derived from the posterior samples of the fitted model, and 
then generate a fitted proportion SPD. This step is executed multiple 
times using different values of pi,j obtained from the posterior. The 
resulting distribution of fitted proportion SPD is then summarised for 
each calendar year by taking, for example, a 90% quantile range, to 
generate a simulation envelope. Finally, the observed empirical pro-
portion SPD can be visually compared to the simulated envelope to 
detect any abnormally high or low proportion values. Because the un-
derlying radiocarbon dates remain the same, the empirical proportion 
SPD and the simulation envelope will be both equally affected by sam-
pling error and calibration effects, effectively bypassing the problems 
encountered with SPDs. The simulation envelope will effectively ac-
count for small sample sizes and minor fluctuations, and because 
equation [6] accounts for overdispersion, a marked deviation from the 
fitted model would occur only when the observed proportion at a 
particular time interval is greater or lesser than the overall variability we 
expect to observe across the archaeological sites. This approach makes 
the posterior predictive check a reasonably robust, if not conservative, 
solution in detecting deviations from an s-shaped diffusion curve. 

In some circumstances, however, the expected deviation from an s- 
shape curve is so significant that the entire premise of trying to estimate 
its parameters can be regarded as flawed. Our third case study represents 
a typical instance where an innovation (cremation in this case) is not 
necessarily expected to reach a stable equilibrium in the population. 
While one could attempt to develop a complex model that accounts for 
possible cyclicity (e.g. using a sinusoidal model), a simpler solution is to 
model the diffusion as a random walk process using a intrinsic Gaussian 
conditional autoregressive (ICAR) model (Besag, 1974; Rue and Held, 
2004). This approach consists of dividing our chronological window of 
analyses into a series of n time-blocks and estimating the associated 
vector of probabilities pt = 1, pt = 2, …, pt = n. The ICAR model effectively 
defines the conditional distribution of pt as a Gaussian, with a mean 
equal to the average of adjacent time-blocks, and a variance τ that de-
creases as the number of neighbouring blocks increases. In practice, this 
means that when estimating pt, we are partially informed by the esti-
mates of pt+1 and pt-1. 

3. Case studies 

3.1. Case study 1a and 1b: diffusion of agriculture in Japan and Britain 

The diffusion of agriculture in Japan (case study 1a) and Britain (case 
study 1b) shares a number of similarities. The two regions are islands 
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located at opposite edges of the Eurasian continent and effectively 
represent the final phase of two separate major episodes of demic and 
cultural diffusion. While the specific crops introduced in the two islands 
are different (primarily wheat and barley for Britain, de Vareilles et al., 
2023; rice, broomcorn millet and foxtail millet for Japan, Fujio, 2021) 
both islands were occupied by an incumbent population of 
hunter-gatherers whose subsistence practices relied on the consumption 
of a significant proportion of nuts (hazelnut in Britain; chestnut, 
buckeye, and acorns for Japan, Bishop et al., 2014; Sakaguchi, 2009). 
The large latitudinal span of the two islands entailed different envi-
ronments and suitability for the diffusion of the new agricultural prac-
tices, and archaeobotanical evidence suggests in both islands episodes of 
reversion as well as a prolonged coexistence of wild resources during the 
early stages of transition to farming (Stevens et al., 2022). The two re-
gions also benefit from the presence of large radiocarbon datasets, which 
include reasonably large samples of direct dates on seeds, that has 
already enabled statistical analyses on the fluctuations in the relative 
frequencies of different crops and wild foods (Bevan et al., 2017; Stevens 
and Fuller, 2012) as well as inferences on dispersal rates and regional 
arrival times of farming practices (Crema et al., 2022; Whittle et al., 
2011). 

For the British Isles the initial diffusion of agriculture (emmer wheat 
and barley, with cattle, goats, sheep and pig, with limited evidence for 
tetraploid free-threshing wheat and flax), has largely been dated to the 
last century of the 5th and the first three centuries of the 4th millennium 
BCE. These farming populations, associated with the Chasséen, Castellic, 
and Michelsberg cultures (Ray and Thomas, 2018; Sheridan, 2010), 
were present in regions of Belgium, northern France and Western Ger-
many some 500–1000 years before agriculture dispersed north across 
the channel. Studies of ancient genomes supports that these agricul-
turalists largely descended from peoples originating within Anatolia/the 
Aegean, with low inputs from Western hunter-gatherers (Brace et al., 
2019; Patterson et al., 2022). This, along with other lines of evidence, 
can be used to reject the hypothesis that once favoured adoption of 
agriculture by indigenous hunter-gatherer groups (Stevens et al., 2022). 
Rather, the input of hunter-gatherer lineages likely accumulated as these 
first agriculturalists dispersed across Europe through the introgression 
of pre-existing hunter-gatherer peoples into farming societies. 

While some evidence of small-scale cultivation (e.g. barnyard millet, 
azuki, and soybeans) in Japan exists for the latter half of the Late and 
Final Jomon periods (mid-3rd millennium BCE ~ end of 2nd millennium 
BCE; Crawford, 2011), a more prominent transition of the subsistence 
economy occurred during the 1st millennium BCE, when migrant 
farmers from the Korean peninsula brought a cultural package which 
included rice and millet (broomcorn and foxtail) agriculture (Fujio, 
2021). Unfortunately, a systematic analysis of the dispersal of millet 
farming is currently not possible due to the comparatively small number 
of direct dates from seeds (see Endo and Leipe, 2022 for indirect evi-
dence from seed impression on pottery; see also Obata and Kunikita, 
2022). In contrast, the relatively large number of dates on charred rice 
has recently allowed for the application of Bayesian analyses to estimate 
regional variations in its rates of dispersal (Crema et al., 2022; Leipe 
et al., 2020). The results of these analyses revealed multiple episodes of 
slow-down, and in some cases a hiatus in dispersal spanning several 
centuries before agriculturalists moved into the next region. 

Statistical analyses of diffusion rates of farming in Japan and Britain 
(and most likely in other regions of the world) have a number of shared 
challenges. For example, the direct dating of seeds can overcome some 
of the problems associated with chronological and contextual uncer-
tainty but also drastically reduces sample sizes, even in comparatively 
14C data rich regions such as Japan and Britain. Furthermore, although 
we would expect the relative proportion of 14C dates associated with 
domesticated crops to increase over time, we have no reason to believe 
that this would reach 100% even when we observe a complete diffusion 
of farming practices (i.e. k ∕= 1). Instead, we expect that diffusion curves 
would reach a plateau with a stable proportion, whose values would be 

conditioned by the extent of the persistence of wild plant resources and 
the baseline probability of dating each taxon. The latter is a complex 
issue, as it is dictated by how likely a particular taxon will be preserved 
and recovered from any given archaeological context, how easily the 
taxon can be identified, and what is the rationale of the excavator for 
choosing to date a specimen of this taxon rather than that of another 
species. These factors all contribute to the relative proportion of radio-
carbon dates on domesticated crops, and there is no reason to believe 
that these would be identical or consistent across different sites. Simply 
put, two contemporary contexts associated with a full adoption of 
farming can have different probabilities of dating a seed of a domesti-
cated crop. 

3.2. Case study 2: burial practices in prehistoric Britain 

Funerary practices vary substantially across the later prehistory of 
Britain and Europe. Some rites may emerge de novo in a region and 
remain geographically and chronologically restricted; other practices 
diffuse rapidly across long distances, creating the superficial appearance 
of supra-regional groups with shared cultural traits (Vander Linden, 
2016). Even in cases where one set of cultural traits and practices is 
predominant, local variability in burial practices is common throughout 
prehistory (Bloxam and Parker Pearson, 2022; Caswell and Roberts, 
2018; Furholt, 2014). A coexistence of multiple burial practices may 
point to diverse cultural origins and influences, but conversely can 
reflect within-group differential treatment on the basis of age, sex, or 
other personal characteristics (e.g. Fernández-Crespo et al., 2020; 
Haughton, 2021; Mittnik et al., 2019). As such, and contrary to the case 
of the diffusion of agriculture, there is no expectation that the balance 
between contemporaneous funerary practices should ever reach an 
equilibrium, or that any particular rite should become dominant over 
others. 

Here, we focus on the changing importance of cremation in com-
parison to other modes of disposal of the dead (e.g. collective or indi-
vidual inhumation burial) as a means of isolating the trajectory of one 
readily-identifiable and distinct set of funerary practices over time. 
Cremation can largely be considered as a binary — incomplete crema-
tion is rare (Rebay-Salisbury, 2015) — but this does not mean it is a 
uniform practice wherever it appears. In Britain, cremation is sporadi-
cally recorded for the Mesolithic and earlier parts of the Neolithic, 
although inhumation burial practices appear to be by far the more 
prevalent in each period (Jay and Scarre, 2017). Although burial evi-
dence is relatively sparse overall in the later part of the Neolithic, 
cremation seems to become the dominant rite for several centuries in the 
first half of the 3rd millennium BCE; here it is frequently unaccompanied 
by grave goods but is often associated with highly-visible circular 
monument forms (Willis, 2021). This is followed, from c.2450 BCE, by 
an episode dominated by inhumation associated with the arrival of the 
Beaker phenomenon from continental Europe (Parker Pearson et al., 
2016). Cremation gradually increases in prevalence once again across 
Britain during the 2nd millennium BCE (e.g. (Bloxam and Parker Pear-
son, 2022; Caswell and Roberts, 2018). Within this later resurgence 
there is an initial period where inhumation and cremation practices can 
be found in correspondingly large numbers, are located at the same 
monument types, particularly round barrows, and are accompanied by 
similar Early Bronze Age artefact types including funerary ceramic urns 
(Garrow et al., 2014). This practice gradually gives way to a preference 
for a more homogenous form of unaccompanied cremation burial, 
located in large open cemetery sites, as it becomes the dominant rite by 
the Middle Bronze Age (Bloxam and Parker Pearson, 2022; Caswell and 
Roberts, 2018). 

Because cremation destroys the organic component of bone, 
cremated remains have largely been excluded from recent studies 
investigating or critiquing the genetic evidence for the role of demic 
diffusion in the transmission of later prehistoric burial rites across 
Europe (Furholt, 2019; Olalde et al., 2018). In the absence of genetic 
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data, and with stable isotope analysis being a very recent development 
for this material (Snoeck et al., 2015), the diffusion and regional onset of 
cremation has to date been estimated either through qualitative 
assessment burial evidence, or through more formal (e.g. Bayesian) 
approaches to local site series (Garrow et al., 2014). 

Statistical assessment of the fluctuating relationship between 
cremation and inhumation presents different kinds of challenges 
compared to the adoption of farming. On the one hand, radiocarbon 
dates provide in this case direct evidence of a particular innovation (at 
least compared to seeds, which remains a proxy variable), and as such, 
they provide a less-biased estimator of the proportion of individuals 
adopting different burial practices. On the other hand, we have no 
reason to expect a typical s-shaped diffusion curve; rates of diffusion are 
expected to vary over time and eventually even produce long-term 
fashion cycles (Manning et al., 2014). It follows that, in contrast to the 
diffusion of agriculture, fitting a sigmoidal function to the empirical data 
would be inappropriate, and the goal should instead be a reliable, 
“non-parametric” estimator of changes in the relative frequency of 
different burial customs over time. 

4. Materials and methods 

4.1. Materials 

4.1.1. Simulated data 
We first examined the robustness of the two statistical approaches we 

developed by examining whether they can accurately recover parameter 
values when dealing with sample sizes comparable to those observed in 
the case studies. While these simulated datasets represent ideal condi-
tions where the data-generating process is equivalent to the statistical 
model, they nonetheless provide an experimental basis to establish a 
baseline on the level of precision and accuracy that our approach could 
achieve in recovering model parameters. 

We simulated three datasets with sample sizes and time-windows 
equivalent to each observed dataset (see sections 4.1.2 and 4.1.3 
below). Calendar dates were uniformly generated within the time win-
dow of analyses, back-calibrated in 14C age, and associated with an 
arbitrary error of 20 years. For simulations 1a and 1b we randomly 
clustered the dates into groups (corresponding to the archaeological 
sites in the observed data) and randomly assigned to each a binary value 
using equations (5)–(8) with the following settings: r = 0.01, m = 2900 
BP, μ = 0.65, φ = 50 (simulation 1a); and r = 0.008, m = 4500 BP, μ =
0.8, φ = 40 (simulation 1b). For simulation 2, we first created a 7th- 

order polynomial curve spanning the time window of analyses and 
normalised it to 0–1 via logistic transformation. This enabled the crea-
tion of a vector of probabilities p for each calendar year, which was then 
used to randomly generate a binary value for each simulated sample. 

4.1.2. Case study 1a and 1b 
We examined a total of 1479 14C dates on seed remains from Japan 

(n = 551, from 215 sites, Fig. 1a) and Britain (n = 928, from 314 sites, 
Fig. 1b). Japanese dates were collated from the radiocarbon database of 
Japan (Kudo et al., 2023) and the rice radiocarbon database used in 
(Crema et al., 2022). We considered dates with a cumulative calibrated 
probability mass equal to or larger than 0.5 for the interval 4000–1700 
cal BP (approximately corresponding to Final Jomon and Yayoi periods) 
and excluded the island of Hokkaido and the Ryukyuan islands from our 
analyses due to their late historical adoption of rice agriculture. The 
resulting sample consisted of 14C dates on rice (n = 203) and on various 
edible wild nuts consumed from the Jomon period onwards (n = 348), 
including chestnut, horse chestnut, walnut, and acorns. 

Radiocarbon dates from Britain were obtained from Bevan et al. 
(2017). We filtered the initial dataset considering dates with a cumu-
lative calibrated probability mass equal to or larger than 0.5 for the 
interval 7000–3000 cal BP (corresponding approximately to Late 
Mesolithic to Late Bronze Age). We used dates on wheat (n = 261) and 
barley (n = 130) as proxies of agriculture and dates on hazelnut (n =
537) as representative of wild plant consumption. 

4.1.3. Case study 2 
Radiocarbon dates associated with burial from the British Isles 

(Fig. 1c) were collated from different published sources and databases 
(Bevan et al., 2017; Bloxam, 2020; Bloxam and Parker Pearson, 2022; 
Healy, 2012; Mallick and Reich, 2023; Olalde et al., 2018; Wilkin, 2013; 
Willis et al., 2016). We chronologically filtered dates with a cumulative 
calibrated probability mass equal to or larger than 0.99 for the interval 
5500–2000 cal BP. We used a higher probability threshold (0.99 instead 
of 0.5) to avoid any edge effects caused by the ICAR model. We exam-
ined the source material to distinguish dates associated with cremation 
(n = 1417) and inhumation (n = 1119). 

4.2. Methods 

Both the hierarchical model described in equations [5–6] and the 
random walk ICAR model were implemented using the NIMBLE (de 
Valpine et al., 2017, 2020) probabilistic programming language in R (R 

Fig. 1. Distribution of sampling sites for the radiocarbon dates in case studies 1a (panel a; rice agriculture in Japan), 1b (panel b; wheat and barley agriculture in 
Britain) and 2 (panel c; burial customs in Britain). 
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Core Team, 2020) and the nimbleCarbon R package (Crema, 2022b; 
Crema and Shoda, 2021). 

For the simulated datasets 1a & 1b and case studies 1a & 1b we fitted 
our hierarchical models using equations [6–9] and the following weakly 
informative priors: 

r ∼ Exponential(100) [10]  

μ ∼ Beta(2, 2) [11]  

φ ∼ Gamma(5, 0.1) [12] 

Priors for the parameter m were modelled using a normal distribu-
tion truncated within with the time-window of analyses and a mean of 
2500 and standard deviation of 500 years for simulation #1 and the 
Japanese dataset, and a mean of 5500 and standard deviation of 1000 
years for simulation #2 and the British dataset. We fitted all four models 
with the same MCMC settings, using four chains, each with 1 million 
iterations (half discarded as burn-in) and with thinning set to 50. We 

evaluated the mixing of our model using the Gelman-Rubin statistic 
(Gelman and Rubin, 1992), except for the posterior of the individual 
dates (θ), which were examined using agreement indices (Bronk Ramsey 
1995) given the target distribution does not necessarily follow a normal 
distribution. We also carried out posterior predictive checks for the two 
empirical case studies by visually comparing observed SPDs of the 
proportion of domesticated crops to an envelope of predictions gener-
ated using 1000 randomly selected parameters from the joint posterior 
distributions. 

The ICAR model for case study 2 and the simulation dataset 2 was 
fitted using 36 time-blocks of 100 years (with mid-points at 5500, 5400, 
5300 … 2000 cal BP), with the variance modelled as the reciprocal of the 
square of an exponential distribution with a rate of 1. To obtain our 
vector of posterior estimates, we used four chains, each with 100,000 
iterations (20,000 of which were discarded for burn-in), with parame-
ters collected every four steps. As for the hierarchical model, we eval-
uated the mixing of our model using the Gelman-Rubin statistic and the 
reliability of the estimated values of θ using agreement indices. 
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We used the IntCal20 curve for all models (Reimer et al., 2020) using 
the calibration process defined in equation [3]. All data and R scripts are 
available on https://github.com/ercrema/diffusionCurve and perma-
nently archived on https://doi.org/10.5281/zenodo.10782942. 

5. Results 

5.1. Case study 1a & 1b and simulated datasets 1a & 1b (hierarchical 
model) 

Our hierarchical approach was able to accurately recover the shape 
of the diffusion curve in both simulated datasets, with the ‘true’ curve 
within the 95% posterior fitted range (Fig. 2a and b). Posteriors of all 
parameters were also recovered accurately with fairly narrow highest 
posterior density intervals (HPDI), suggesting that good precision can 
potentially be achieved for all parameter estimates with the sample sizes 
available (Fig. S1 - Fig. S2). 

Results of the posterior predictive checks of the Japanese and British 
datasets (Figs. 3 and 4) have, instead, revealed a poor fit between the 
model and the empirically observed proportion SPDs, suggesting in both 
cases that the diffusion processes cannot be described by a sigmoid 
curve. In the case of Japan, the fitted model suggests that a stable and 
relatively high but extremely variable proportion of rice radiocarbon 
dates is reached quickly after a few centuries from the introduction of 
the crop (see Table 1). Posterior predictive checks show (Fig. 3), how-
ever, that the model overestimated the proportion of rice dates between 
c. 800 and 500 BCE and the observed proportion SPD was higher than 
the model prediction from 200 BCE onwards. 

The fit between the model and empirical SPD was worse in the case 
of the British dataset. Model posteriors for the British Isles show low 
values for μ, a high inter-site variation in kj (i.e. low φ) and a diffusion 
rate that was an order of magnitude smaller than Japan. The posterior 
predictive checks (Fig. 4) show both negative and positive deviations; 
the former primarily between ca. 3700 to 2300 BCE and the latter 
observed from 1600 BCE onwards. 

5.2. Case study 2 & simulated dataset 2 (ICAR model) 

The non-parametric ICAR approach successfully recovered the ‘true’ 
time-sequence of p used to generate the simulated dataset 2 (Fig. 2c), 
indicating that available sample size should be able to recover accu-
rately and fairly precisely at least a couple of cycles of diffusion at 
millennium scale. 

Our empirical case study revealed the existence of two major cycles 
of diffusion and abandonment of cremation; one peaking in the Late 
Neolithic at around 2900 BCE and the other in the Early to Middle 
Bronze Age around 1900-1200 BCE (Fig. 5). The ICAR model also 
identified key shifts in the probability of a date being associated with 
cremation, with the most notable case identified at the turn of the 2nd 

Fig. 3. Posterior predictive check of the fitted hierarchical Model on observed 
proportion SPD of 14C dates on rice over dates on rice and nuts in Japan (case 
study 1a). 

Fig. 4. Posterior predictive check of the fitted hierarchical Model on observed 
proportion SPD of 14C dates on wheat and barley over dates on wheat, barley, 
and hazelnut in Britain (case study 1b). 

Table 1 
Posterior estimates and convergence diagnostics on key parameters for case 
studies 1a and 1b (r: diffusion rate, m: inflection point; μ: modal equilibrium 
value of probability cap k; φ: concentration parameter for k).  

Region Parameter Median 90% HPD Rhat 

Japan (Case study 1a) r 0.1023 0.0131–0.3378 1.0003 
m 844 BCE 893–809 BCE 0.9999 
μ 0.703 0.476–0.937 0.9999 
φ 0.75 0.17–1.67 1.0004 

Britain (Case study 1b) r 0.0136 0.0015–0.0382 1.0005 
m 4053 BCE 4361–3857 BCE 1.0003 
μ 0.182 0.01–0.42 1.0001 
φ 0.31 0.1–0.57 1  

Fig. 5. Estimated proportion of cremation dates in Britain (case study 2).  
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millennium BCE when the cremation proportion increases sharply 
following a period of low prevalence that corresponds with the 
appearance of Beaker phenomenon inhumation rites across Britain. 

6. Discussion 

The new suite of Bayesian inferential tools we introduced has suc-
cessfully managed to infer DOI curves based on the time-frequency of 
radiocarbon dates from both simulated and empirical datasets. Our so-
lution overcomes several problems that affect current approaches based 
on SPDs, including sampling error, calibration-based artefacts, and 
overdispersion arising from inter-site variation in both sampling prac-
tices and past behaviour. 

Albeit applicable in most contexts, the two approaches we present — 
the parametric hierarchical model and the non-parametric ICAR model 
— were developed with different purposes in mind. The parametric 
model can provide numerical estimates such as diffusion rate (r) or 
average diffusion cap (μ), which can potentially be associated with in-
dependent explanatory variables to evaluate specific hypotheses con-
cerning diffusion drivers. In contrast, the non-parametric ICAR solution 
provides a visual descriptive tool that may be used to characterise more 
complex diffusion dynamics. This flexibility inevitably comes with a 
cost, as specific hypotheses cannot be assessed, and key summary sta-
tistics are not inferred from the empirical data. 

Our case studies on the diffusion of agriculture in prehistoric Japan 
and Britain showcase the many challenges in fitting a s-shaped diffusion 
curve on empirical datasets. Despite the added flexibility of our hier-
archical approach, neither of the two studies showed a good fit between 
the data and the model, and instead highlighted significant deviations 
between the observed and expected proportion SPDs. While this might 
be interpreted as a negative result, we highlight that our posterior pre-
dictive check provided means to identify whether and, more impor-
tantly, how the empirical data deviates from the expectation. It is 
important to note that predictive intervals are conditioned by the extent 
of uncertainty and variability in the data. Smaller sample sizes and high 
overdispersion (i.e. high inter-site variability in k) typically generate 
wider posterior intervals, decreasing the chance of observing significant 
departures of the observed SPD from the prediction envelope. As noted 
above, our simulation datasets demonstrated that an accurate and pre-
cise recovery of the data-generating parameters is possible with the 
available sample sizes. It follows that the bulk of the variability of the 
posterior envelope in Figs. 3 and 4 are dictated primarily by the low 
concentration parameters. While we cannot determine the extent by 
which such estimated variability in k was due to variation in sampling 
practices or genuine variations in the role of farming across different 
sites, the added flexibility was not sufficient to explain the range of 
fluctuations in observed SPDs, suggesting that we have robust signals of 
deviations from sigmoid diffusion curves. 

In both Japan and Britain, archaeological evidence provides some 
clues on why a sigmoid diffusion curve did not fit the observed data. In 
the case of Japan, the dispersal of rice agriculture is known to have been 
characterised by episodes of significant regional accelerations and 
slowdowns (Crema et al., 2022), which might explain why the observed 
diffusion curve (Fig. 3) can be described as a double s-shape. These 
shapes imply an initial stage with a fast diffusion rate followed by a 
drastic slowdown (a saddle point in the curve), followed again by an 
accelerated diffusion rate. Several explanations have been proposed in 
the literature (Cadavid and Cardona, 2014; Lefebvre, 1995; Reader, 
2004), with the most common interpretation centred on the idea that 
these shapes signal the existence of community structure, with the 
saddle point being the consequence of intervals when the innovation is 
transmitted across different metapopulations. Indeed, the interval be-
tween 500 and 200 BCE, when the empirical diffusion curve is fairly flat 
and does not show positive or negative deviations, corresponds exactly 
to the timing of the most prominent slowdown in the dispersal of 
farming in Japan (cf. transition from region V to VI on Fig. 3 in Crema 

et al., 2022). 
As with the Japanese case, the diffusion curve for farming in Britain 

and its deviations from the sigmoid curve are not unexpected. Previous 
studies (Bevan et al., 2017; Stevens et al., 2022; Stevens and Fuller, 
2012, 2015) have already revealed a shift in subsistence towards total 
reliance on pastoralism and wild food resources, accompanied in many 
regions of mainland Britain by the abandonment of crops and cultiva-
tion. Agricultural crops reappear in the Beaker period/Early Bronze Age 
accompanied by genetic evidence for the appearance of peoples whose 
ancestors originated in the Eastern Steppe (Patterson et al., 2022), with 
declining evidence for wild foods in the 2nd millennium BCE along with 
many cultural elements associated with fully agricultural societies 
(Stevens and Fuller 2012; Stevens et al., 2022). 

Although based on a different methodology, our approach still 
highlights this pattern, providing a more accurate estimate of when we 
observe a lower-than-expected proportion of dates associated with 
farming. The British agricultural diffusion case study also demonstrates 
how the model is sensitive to the exact distribution of available dates in 
determining its parameters. For example, the relative lack of 14C dates 
around the crucial centuries before and after 4000 BCE (Fig. 4), which 
corresponds to the earliest occurrence of domesticates in Britain, had 
most likely limited the estimates of r and m as there was virtually no 
information available on the proportion of dates associated with wheat 
and barley. Finally, it is worth noting that the interpretation of the 
model parameters should always account for the model’s goodness of fit. 
For example, the midpoint parameter m in Japan is a biased estimator of 
when half the population adopted rice agriculture, given that we 
observe positive deviations of the empirical curve around proportions 
above the estimated average cap μ right at the end of our window of 
analysis. Similarly, the overall low diffusion rate r in Britain is largely 
impacted by the presence of a temporary abandonment of farming, and 
as such, it reflects just the average long-term rate of diffusion. 

The flexibility of the non-parametric model provides a clear advan-
tage under these conditions and, more generally, in cases where we do 
not expect an s-shaped diffusion curve to begin with. The case of burial 
customs in Britain is a typical example where our primary goal is 
exploratory and our objective is to determine the timing of the repeated 
adoption and abandonment of one cultural trait across several millennia. 
Our model has confirmed the existence of two such major cycles, one in 
the Neolithic between 3200 and 2300 BCE and one in the Bronze Age 
from 2200 to 500 BCE. 

The first of these cycles reflects the adoption and abandonment of 
Later Neolithic cremation practices across Britain. The radiocarbon ev-
idence for this period is relatively sparse, indicated by the larger error 
bars in this portion of the plot; some Late Neolithic cemetery sites such 
as Stonehenge in Wiltshire (Willis et al., 2016) and Forteviot in Perth 
and Kinross (Noble et al., 2017) have produced many cremation dates, 
but cremated remains from this period have been historically 
under-valued and under-studied (Mckinley, 1994). The abandonment of 
this phase of cremation, following its peak in around 3000-2900 BCE, is 
often presumed to be associated with the advent of the Beaker period. 
However, the decline in cremation is marked from 2800 BCE onwards 
and thus pre-dates Beaker inhumation practices in Britain by several 
centuries, suggesting that this decline may reflect endogenous factors 
rather than external influences. 

The second major cycle of cremation customs reflects a well-attested 
series of Early Bronze Age traditions that arose after the inhumation- 
focused Beaker period. Although some cremation activity persists 
across the Beaker period (Bloxam and Parker Pearson, 2022) the rites 
that proliferate during the second cycle are associated with new material 
culture and monument forms, and indicate the development of a new 
cremation practice rather than a return of rites from the previous cycle. 

From 2200 BCE onwards cremation sees a rapid increase in preva-
lence with a longer-lasting period of predominance than in the first 
cycle: cremation rites remain the most common practice for the subse-
quent millennium. A key finding for this cycle is the speed at which a 
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transition from ~10% to ~80% prevalence occurs, the century 
2050–1950 BCE seeing a particularly rapid shift in practices; this is in 
marked contrast to the slow decline in prevalence seen at the end of each 
cycle, which is drawn out over several centuries. The variable speed of 
these processes in each cycle provides evidence to support future study 
of how different drivers of change, including the role of cultural versus 
demic diffusion, might influence the rate of adoption of novel funerary 
practices. Further, it can be used to support further investigations of the 
variable timing of post-depositional re-engagement with burials 
observed across later prehistory (Appleby, 2013; Booth and Brück, 2020; 
Brück and Booth, 2022). 

As noted above, the inferential framework introduced in section 3 
can theoretically be extended to incorporate other elements. Equation 
[5] can include covariates allowing users, for example, to account for the 
time of dispersal (m) to be conditioned by the distance from the point of 
origin of an innovation, or to determine the extent to which environ-
mental settings promote or inhibit the diffusion of farming practices (e. 
g. by associating covariates to the diffusion rate r). The relationship 
between time and p does not need to follow a sigmoid curve. One could 
potentially model the different curves to estimate cycles of adoption (e. 
g. using a sine wave function) or account for population structure (e.g. 
using a double-stage sigmoid curve), and even different transmission 
biases (Henrich, 2001), although a non-parametric model might be more 
useful during early stages of data exploration. 

It is worth noting that the inferential power of the two methods is 
inevitably conditioned by the underlying shape of the diffusion curve, 
the sample size, and the specific idiosyncrasies of the calibration curve. 
Our two examples on the diffusion of farming provide instances of 
longer (Britain) and shorter (Japan) term dynamics, with the latter at 
least in part conditioned by the calibration plateau around 800-400 BCE. 
Similarly, case study 2 (British burials) encompasses several intervals 
with calibration plateaus. Yet a comprehensive assessment of all factors 
conditioning the inferential power of the approach we propose is not 
possible. Simulation studies like those presented here where artificial 
datasets with the same sample size, sample structure, and temporal 
window of analyses as the observed data are examined in detail can 
reveal the extent to which the inferential engine can or cannot recover 
hypothetical patterns. Such what-if experiments (Buck and Meson, 2015) 
are paramount for properly determining whether the available samples 
are appropriate for the specific question posed. 

Lastly, all empirical case studies presented here covered a compar-
atively wide geographic and chronological window where the assump-
tion of a stationary diffusion process can be difficult to justify. As 
evidenced in both case studies on the diffusion of farming, one should 
expect variations in diffusion dynamics within larger spatial and tem-
poral windows where the assumption of a sigmoid curve might hold only 
for particular intervals and locations. Curves fitted over these datasets 
should be examined with care, as they capture averaged trends and 
obscure potential variations. There is inevitably a trade-off; smaller 
spatial and temporal windows are more likely to follow a sigmoid curve 
but are also limited by smaller sample sizes and lower inferential power. 
Furthermore, defining a meaningful geographic subdivision is a chal-
lenge itself, given potential issues such as the modifiable areal unit 
problem (Openshaw, 1984). A possible solution to this is to employ 
models that formally account for the spatial structure of the data, such as 
Gaussian Process regression (Rasmussen and Williams, 2006). These 
potential directions would still require sufficient sample sizes to be 
viable, but the growing number of large databases of radiocarbon dates 
might give hope that such opportunities are not that far away. It is 
further worth noting that the assumption of stationarity was made also 
for the site level random effect kj. In the British dataset for case study 1b, 
11% (36 out of 314) of the sites have calibrated dates spanning an in-
terval of over 1000 years, making the assumption of the same value for kj 
potentially problematic. Employing different aggregation units, possibly 
adding multiple levels (e.g. context or phase and site) may address this 
issue, particularly when additional covariates at such a level might help 

inform the model in estimating sensible values of kj. 

7. Conclusions 

The last decade saw an increasing effort in synthesising large col-
lections of radiocarbon dates to provide new insights into the human 
past. While much of the focus has been centred on paleo-demographic 
inferences, there are increasing opportunities to investigate other phe-
nomena, each with its own methodological and theoretical challenges. 
Here we introduced and explored the application of a Bayesian pipeline 
for modelling DOI curves. Results on both simulated and empirical 
datasets have revealed that our method can accurately recover the 
temporal dynamics of the diffusion process and identify instances where 
observed patterns deviate from a typical s-shaped curve. Both empirical 
case studies on the diffusion of farming did indeed show such deviations. 
In Japan, this was most likely the consequence of a slow-down in the 
dispersal of rice agriculture in the northern regions of the archipelago, 
whilst, in Britain, this was the result of a temporary increase in pasto-
ralism and consumption of wild plants. Whilst both phenomena were 
known from previous studies, our analyses provided an independent 
assessment of these events and a more accurate estimate of their timing. 
Our third case study on the temporal changes in the burial customs in 
Britain showcased how our non-parametric model can be used in in-
stances where we should not expect a sigmoid curve to begin with but 
are interested in simply recovering the shape of fashion cycles. Although 
exploratory by nature, this approach can still provide numerical esti-
mates of the magnitude of diffusion events and the timing of when 
abrupt changes might have occurred. 
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Kuchařík, M., Farré, J.F., Fowler, C., Gazenbeek, M., Pena, R.G., Haber-Uriarte, M., 
Haduch, E., Hey, G., Jowett, N., Knowles, T., Massy, K., Pfrengle, S., Lefranc, P., 
Lemercier, O., Lefebvre, A., Martínez, C.H., Olmo, V.G., Ramírez, A.B., Maurandi, J. 
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Boissinot, P., Bonsall, C., Bradley, P., Brittain, M., Brookes, A., Brown, F., Brown, L., 
Brunning, R., Budd, C., Burmaz, J., Canet, S., Carnicero-Cáceres, S., Čaušević- 
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