
OR IG I N AL ART I C L E

A Bayesian alternative for aoristic analyses in
archaeology

Enrico R. Crema1,2

1McDonald Institute for Archaeological
Research, University of Cambridge,
Cambridge, UK

2Department of Archaeology, University of
Cambridge, Cambridge, UK

Correspondence
Enrico R. Crema, McDonald Institute for
Archaeological Research, University of
Cambridge, Downing Street, CB2 3ER,
Cambridge, UK.
Email: erc62@cam.ac.uk

Funding information
Leverhulme Trust, Grant/Award Number:
PLP-2019-304

Abstract
Aoristic analysis is often used to handle chronological
uncertainties of datasets where scientific dates (e.g., 14C
and OSL) are unavailable, and observations are
described by association to archaeological periods or
phases. Although several advances have been made
over the last 2 decades, the basic principle of this
approach remains fundamentally the same. Temporal
windows of analyses are first divided into regularly
sized time blocks, and probability weight is assigned to
each of these for every observation. Weights are then
aggregated by time block, and the resulting vector of
summed probabilities is interpreted as a curve rep-
resenting changes in the intensity over time of a partic-
ular phenomenon. This paper reviews the basic
principles and assumptions of aoristic analyses in
archaeology, highlighting several issues with its appli-
cation and interpretation, advocating for a Bayesian
alternative implemented via baorista, a new package
written in R statistical computing language. The
robustness of the proposed solution is evaluated
through a series of experiments based on simulated
datasets, which showcase key advantages over aoristic
analysis. Two specific solutions are considered: a para-
metric approach where data are fitted to specific
growth models and a nonparametric approach that
allows for the visualisation of the changing frequencies
of events, accounting for sampling error and the pecu-
liarities of archaeological periodisation.
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INTRODUCTION

Time is undoubtedly one of the most important and ubiquitous yet elusive and problematic con-
cepts in archaeology. Ontological and epistemological discussions proliferate the archaeological
literature (Bailey, 2007; Lyman & O’Brein, 2006; Murray, 1999), and the opportunity of provid-
ing long-term perspectives is a trope that is often used to justify its broader disciplinary rele-
vance. It is undeniable, however, that we recurrently need to face the inferential limits imposed
by issues such as chronological resolution, time averaging, and, more broadly, the problem of
temporal uncertainty. The widespread use of radiocarbon and other scientific dating techniques
offers new opportunities to address many of these concerns. More recently, the use of Bayesian
models has dramatically refined our ability to date key events (Bayliss, 2009; Buck et al., 1996),
whereas the availability of large collections of radiocarbon dates has even kindled a growing
interest in new research areas such as comparative paleodemography (Crema, 2022; French
et al., 2021).

Although absolute chronology is regarded as the golden standard for prehistoric research,
much of the legacy data at our hands are based on traditional forms of relative chronologies,
typically inferred from diagnostic properties of the artefacts we recover. Efforts have been made
to translate archaeological periodisations into absolute chronology through, for example, the
use of radiocarbon dating and Bayesian methods (Brunner et al., 2020; Crema &
Kobayashi, 2020; e.g. Ziedler et al., 1998). These advances can even offer temporal resolutions
comparable to those provided by scientific dating for later periods, but much of the prehistoric
record is still constrained by coarser and often vague typochronologies. As a result, most
archaeological data are still typically attributed to a period or a phase chronologically bounded
by a (often loosely defined) start and end date. Most diachronic analyses are thus built around
these temporal units, which can be severely limiting in the presence of uneven and large dura-
tions or when, depending on the quality of the diagnostic artefacts, a precise attribution to a
particular phase or another is not always possible (Bevan et al., 2012).

The current ‘go-to’ solution in analysing archaeological datasets dated by means of relative
chronologies is to employ a suite of techniques with a shared origin in aoristic analysis. The
technique was initially developed in crime science (Ratcliffe & McCullagh, 1998), and after a
few early applications in the early 2000s (Johnson, 2004; Mischka, 2004), it experienced mild
success within archaeology (Baxter & Cool, 2016; Brozio et al., 2019; Crema, 2012; Franconi
et al., 2023; Furlan, 2017; Hinz et al., 2019; Hoebe et al., 2023; Kleijne et al., 2020; Knitter
et al., 2019; Levy et al., 2022; Orton et al., 2017; Palmisano et al., 2017, 2019; Pollard, 2021;
Roalkvam, 2022; Romandini et al., 2020; Romanowska et al., 2021; Stoddart et al., 2019;
Taelman, 2022; Verhagen et al., 2016; Yubero-G�omez et al., 2016), partly aided by the develop-
ment of several dedicated R packages such as aoristic, datplot, archSeries, and kairos
(Frerebeau, 2022; Orton et al., 2017; Ratcliffe, 2022; Steinmann & Weissova, 2021). The con-
ceptual idea behind aoristic analysis is not new, and it is worth noting that similar ideas were
independently introduced within archaeology before and after Ratcliffe’s seminal paper
(e.g. Carlson, 1983; Roberts et al., 2012).

The main appeal of aoristic analysis (and similar methods) is rooted in their intuitive
handling of chronological uncertainty and the minimum requirements for their implementation
(see Section 2 below for details). Although, in principle, aoristic approaches can be part of any
analyses involving time, its primary application in archaeology has been the visualisation of
time-frequency data. In practical terms, aoristic analyses offer a solution for replacing the x-axis
of bar plots from relative chronologies (e.g. ‘Early Bronze Age’ and ‘Middle Bronze Age’) to a
sequence of time blocks representing equally sized time intervals (e.g. 3700–3601 BC and 3600–
3501 BC), while accounting for the (1) the uneven duration of the periodisations and phases, and
(2) the uncertainties in the assignment of each observation to these periodsiations and phases.
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In this paper, I argue that (1) the archaeological application of aoristic methods is often
unwarranted and can occasionally lead to a misleading interpretation of the data, and (2) an
alternative approach based on Bayesian inference can solve many of its limitations. Section 2
will briefly review aoristic analysis and related techniques developed within archaeology;
Section 3 will highlight the main issues of its application in archaeological analyses, with a par-
ticular emphasis on its use for building time series of frequency data. Section 4 will introduce
the basic principle of a Bayesian alternative, and Section 5 will examine the robustness of the
proposed approach through the analyses of simulated datasets. Finally, Section 6 will summa-
rise and discuss the main findings presented in the paper, focusing on limitations and potential
future methodological advances.

AORISTIC ANALYSIS

Core concept

Aoristic analysis was initially developed by Ratcliffe and McCullagh (1998) to provide a quantita-
tive framework for analysing crime patterns where each event does not have a precise time stamp
(e.g., ‘The car was stolen at 2:23 pm’) but is described instead by a timespan bounded between two
points in time representing the interval within which the event occurred (e.g., ‘The car was stolen
sometime between 1 pm and 3 pm’). The key concern here is that timespans of events cannot be
straightforwardly handled in temporal analyses, and basic queries (e.g. ‘Is the crime rate higher at
2 pm or 3 pm?’) become difficult. The most common solution involves using midpoints
(e.g. treating ‘The car was stolen sometime between 1:20 pm and 1:50 pm’ as if it were ‘The car
was stolen at 1:35 pm’), or removing samples with coarse chronological resolutions. Neither are
satisfactory and can lead to biased patterns in the data. Ratcliffe and McCullagh’s core intuition
was to (1) discretise time into a series of regularly sized blocks (e.g. 1:01–2:00 pm and 2:01–
3:00 pm), and (2) assign aoristic weights to each of these time blocks based on the duration of the
timespan. Thus, if an event had a timespan of 12:00 pm to 2:00 pm, it would have an aoristic
weight of 0.5 for 12:01–1:00 pm and 0.5 for 1:01–2:00 pm. This solution is effectively equivalent to
describing the uncertainty of the timestamp θi of the event i as a uniform probability distribution:

θi �Uniform αi,βið Þ ð1Þ

where αi and βi are the start and end points of the timespan of the event i. Once these weights
are assigned, it is possible to add them by each time block and display a ‘temporal weight histo-
gram’, which provides an ‘indication of the probable temporal distribution of events’
(Ratcliffe, 2000). In mathematical terms, Equation (1) is just a particular way to express mea-
surement error employing a uniform distribution rather than a more conventional Gaussian
distribution.

The shared concern with temporal uncertainty in crime science and archaeology led to pio-
neer adaptations of aoristic analysis in the latter field during the early 2000s (Johnson, 2004;
Mischka, 2004). A key step for this adaptation was to infer the timespan of archaeological
events from an evaluation of the diagnostic properties of an object and its attribution to one or
more archaeological periods. Thus, depending on its diagnostic features, a potsherd might be
assigned to a narrower (e.g. ‘late Medieval’, 1200–1537 CE) or a broader timespan
(e.g. ‘unidentified period’, 6300 BCE-2000 CE).

Despite these early attempts, archaeological applications of aoristic analysis took off only in
the subsequent decade, partly promoted by the increased availability of computer scripts for
executing calculations and by methodological advances that addressed some, but not all, of its
shortcomings.
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Issues with the application of aoristic analyses in archaeology

The basic premise of aoristic analyses is an intuitive approach that enables, in its simplest form,
a straightforward visualisation of chronologically uncertain time-frequency data as a time-series
of summed weights. Although this undoubtedly provides the basis for a quick visual assessment
of the archaeological record, aoristic analysis is plagued by several statistical issues that can
potentially lead to unwarranted interpretations and conclusions.

Summation problem

Several authors have highlighted how summing aoristic weights can be ‘misleading’
(Crema, 2012), and ‘does not accord with […] established mathematical definition of probabil-
ity’ (Collins-Elliott, 2019), raising concerns similar to those made for the summed probability
distribution of radiocarbon dates (Blackwell & Buck, 2003; Carleton & Groucutt, 2020;
Crema, 2022).

The problem is that the summation of aoristic weights hinders the underlying chronological
uncertainty when examining changes in the frequencies of events over time. A simple example
can illustrate this problem. Suppose we have two scenarios, each with five events (A, B, C, D,
and E) and five time blocks (t1,t2, … t5). In the first case, we assume all events have the same
timespan covering the five time blocks (i.e. they have the same aoristic weights across all time
blocks; wA = {t1 = 0.2; t2 = 0.2; t3 = 0.2; t4 = 0.2; t5 = 0.2}, wB = {t1 = 0.2; t2 = 0.2; t3 = 0.2;
t4 = 0.2; t5 = 0.2}, etc.). In the second scenario, we assume there is no temporal uncertainty but
also that each event is assigned to a different time block (i.e. wA = {t1 = 1; t2 = 0; t3 = 0;
t4 = 0; t5 = 0}, wB = {t1 = 0; t2 = 1; t3 = 0; t4 = 0; t5 = 0}, wC = {t1 = 0; t2 = 0; t3 = 1;
t4 = 0; t5 = 0}, etc.). In both cases, the sum of the aoristic weights over the five time blocks will
be the same (i.e. wTotal = {t1 = 1; t2 = 1; t3 = 1; t4 = 1; t5 = 1}), and as such aoristic analysis
would not distinguish between the two scenarios. If we treat aoristic weights as probabilities
and ask ourselves whether there was a change in the frequency of the events from t1 to t2, we
would reach different conclusions. In the second scenario, we are confident that there are no
changes, as we know that there was only one event in each time block. In contrast, the answer
to the first scenario is more complex. We have, in fact, a total of 3125 possible permutations of
our events across the time blocks, but the number of events in t1 and t2 are the same only in
873 cases. This means the probability of ‘no change’ in the number of events between t1 and t2
is only ca. 0.28 (i.e. 873/3125), far from being the most likely scenario. Clearly, examining just
the sum of aoristic weights does not adequately capture how the frequency of events might have
changed over time.

Because the number of permutations becomes quickly intractable as the number of events
and time blocks increases, analytical solutions for deriving probabilities for specific changes in
time frequency are not feasible. Crema (2012) tackles this problem using Monte Carlo simula-
tion, effectively sampling n time frequencies from the universe of all possible permutations and
then computing the probability of observing specific scenarios. Despite the large number of per-
mutations, such an approach can quickly converge to stable outcomes even after a few thou-
sand iterations, providing a straightforward solution to the summation problem.

Archaeological periodisation

Calculating the timespan of archaeological events typically involves a two-stage process: Diag-
nostic features of each artefact are first associated with one or more archaeological periods, and
subsequently, the earliest and latest start and end dates are derived. Although the exact
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procedure might differ case by case, the key point here is that the definition of the timespan is
commonly based on the association of the focal event to some pre-existing chronological points
or intervals. This step has profound inferential implications. When the number of chronologi-
cally diagnostic elements is small, archaeological timespans are less random; that is, events
close in time are more likely to fall into the same archaeological period, resulting in identical
timespans. This is somewhat different from crime events, where events close in time can have
different timespans, and hence observations can be assumed to have independent measure-
ment errors. Of course, with an increasing number of independent chronological diagnostic
elements, the timespan assigned to each event can become more idiosyncratic, and the
assumption of independent measurement error can hold to some extent. Nonetheless, in
many prehistoric contexts, where events are often dated from periodisation alone, timespans
are nonrandom.

Bevan and Crema (Bevan & Crema, 2021) have recently shown the implication of non-
random measurement error in aoristic analyses by comparing the potential impact of different
timespans assigned to the same simulated dataset. Figure 1 uses a similar simulation approach
to showcase how nonrandom measurement errors derived by archaeological periodisations
(Figure 1a–c) can produce time series of aoristic sums that can be very different to each other
and the ‘true’ underlying time frequency. In contrast, when timespans are assigned randomly
(d), aoristic sums can produce sequences far closer to the true time frequency.

Inferential consequences of nonrandom measurement error in aoristic analysis are clearly
dependent on the nature of the underlying archaeological periodisation from which timespans
are derived. Even short phases and periods are less likely to lead to biased outcomes
(Figure 1b). Conversely, if the underlying archaeological periodisation is coarse and/or has
uneven durations, artificial abrupt shifts in the frequency density are likely to be observed at
major transitions between phases and periods (e.g. drop in density observed at ca. 3800 BP in
Figure 1a). The core implication of ignoring the impact of periodisation is the potential of con-
structing circular arguments. There is an intuitive appeal to assume that social and economic
changes co-occur across domains so that, for example, we might expect changes in population
size during periods of significant sociocultural changes, which in turn are reflected by the mate-
rial record from which we might define our periodisations. This inferential chain remains an
untested assumption, and uncritically applying aoristic analyses might lead to a confirmation
bias, given that significant changes in aoristic sums will often occur at the transition between
archaeological periods and phases.

Descriptive versus inferential statistics

The third major limitation of aoristic analyses is that, by its nature, it is a method designed to
describe the observed sample and not the underlying statistical population. Even when proper
treatment of chronological uncertainties is handled via Monte-Carlo simulation and the impact
of the underlying archaeological periodisation is negligible, the result of aoristic analyses can
only describe the fluctuations in the density of the sample events. As a result, any observed
changes in aoristic sums over time could be a statistical fluke arising from sampling error. To
put it more succinctly, at its best aoristic analysis can only be a good descriptive statistic for
time frequencies; the technique was never meant to be a tool for making inferences about the
underlying statistical population.

This inferential problem also relates to the granularity of the ‘shape’ of the temporal density
one aims to recover. If one wishes to recover broad trends over multiple millennia, smaller sam-
ple sizes and coarser periodisation might well be sufficient. Conversely, if the objective is to
recover fluctuations with shorter frequencies and smaller magnitudes, one would require a
larger number of events coupled with evenly and regularly sized fine-grained archaeological

A BAYESIAN ALTERNATIVE FOR AORISTIC ANALYSES IN ARCHAEOLOGY 5
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periodisations. As for any statistical inference, whether the available sample is sufficient in
terms of quantity and quality depends on the question asked.

Other issues

The three points discussed above are the most common set of limitations and problems associ-
ated with aoristic analyses. However, it is worth noting that several other issues have also been
raised in the literature.

Crema and Kobayashi (2020) argue that the uncertainty of when an event occurred within
its timespan of existence is only one of the three forms of uncertainty associated with

F I GURE 1 Comparison of aoristic sums and Monte Carlo simulations under different archaeological periodisation
(Ppanels a–c, with periodisation intervals shown as grey bars on the top; not shown for Panel c due to multiple
overlapping phases) and completely random timespans (panel d) on the same underlying dataset and statistical
population.

6 CREMA
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archaeological periodisation. They distinguish among within-phase uncertainty (the uncertainty
on when an event occurred within an archaeologically defined phase), phase assignment uncer-
tainty (the uncertainty in assigning an event to a particular archaeological period or phase), and
phase boundary uncertainty (the uncertainty on the definition of the absolute calendar dates of
the start and end of phase), and advocate for an analytical workflow where these uncertainties
are estimated from empirical data (e.g. employing Bayesian analyses on radiocarbon dates asso-
ciated with particular phases) and taken into account together within the Monte-Carlo simula-
tion approach.

Several authors note that a uniform probability distribution (i.e. Equation (1) above) is only
one possible way to model the uncertainty within the timespan of an event. Baxter and Cool
(2016), for example, model this interval using a Beta distribution (technically a beta-PERT
distribution), which provides a flexible range of symmetric and asymmetric unimodal shapes
and includes the uniform distribution as a special case. Others have similarly used different
probability distributions, including chi-square (Carlson, 1983), Gaussian (Bellanger &
Husi, 2012), gamma (Steponaitis & Kintigh, 1993), and trapezoid (Crema & Kobayashi, 2020).
Although the exact shapes of these distributions differ, they all share an unimodal shape
typically observed in the rise and fall popularity of stylistic traits. The extent to which such a
shape is preferable over a uniform probability distribution is debatable and ultimately condi-
tioned by the nature of the chronologically diagnostic elements employed. In some cases,
employing the latter under the premise of the principle of insufficient reason could be an
acceptable solution.

Although dimensionless ‘events’ are mathematically straightforward to handle, most
archaeological phenomena have some duration in time. If the event is relatively short compared
to the chronological resolution of analyses (e.g. the construction of a dwelling), the implications
are minimal; events can effectively be treated as points in time. However, when the duration of
an event is considerably long relative to the time window of analyses (e.g., the occupation of a
site), several analytical consequences and challenges arise. Palmisano et al. (Palmisano
et al., 2017) approach events with duration using a modified two-step Monte-Carlo simulation
approach. They examined long-term changes in the settlement density of central Italy by first
randomly sampling the start date of occupation within the temporal time-span, and subse-
quently simulating the duration of each settlement using a Gaussian distribution informed by
the available archaeological record. Collins-Elliott (2019) also employs a Monte-Carlo
approach to examine the abundance of Roman coinage usage but instead models the duration
of coin use via a geometric distribution, with a probability λ representing the chances of coins
being discarded each year.

Finally, an under-discussed aspect of the Monte-Carlo simulation approach is the problem
of sample interdependence. Consider, for example, a situation where the objective is to assess
changes in residential density over time. Suppose we have a prehistoric settlement that con-
sists of 20 dwellings, all with an identical timespan between 7000 and 3000 BP. How should
the dates of the residential units be simulated? If we sample each residential unit indepen-
dently, our simulations will unlikely contain instances where the 20 dwellings co-exist in time.
Indeed, with larger timespans, this will become increasingly unlikely. On the other hand,
simulating a single date for 20 residential units comes with a strong assumption of settlement
contemporaneity that is not necessarily warranted. Orton et al. (2017) briefly discuss this
problem in the context of aoristic analyses applied to historic fish consumption in London.
They chose to use the context of recovery (rather than individual observations) as an analyti-
cal unit, weighting its contribution to the Monte-Carlo approach based on the number of eco-
facts recovered.
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 14754754, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/arcm

.12984 by C
am

bridge U
niversity L

ibrary, W
iley O

nline L
ibrary on [17/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BAYESIAN SOLUTIONS

Similarities between aoristic analyses and summed probability distribution of
radiocarbon dates

Many of the problems associated with aoristic analyses and related methods in archaeology
resemble those encountered in the application of summed probability distribution of radiocar-
bon dates (hereafter SPD). First, the problematic interpretation of summing probabilities of cal-
ibrated dates is mathematically equivalent to the issues associated with summing aoristic
weights. Second, the uncertainty associated with each radiocarbon date is also nonrandom and
linked (at least in part) to their absolute dates. As a consequence, just as we observe specific sig-
natures from the underlying archaeological periodisations in aoristic analyses, SPDs are
characterised by distinctive peaks and troughs that result from the slopes and the plateau of the
calibration curve. Third, both SPDs and aoristic sums are descriptive rather than inferential
statistics.

A fairly extensive number of papers have raised these problems with SPDs (for a recent
review see Carleton & Groucutt, 2020; Crema, 2022), highlighting how biased their visual
assessment can be and advocating for more robust analytical solutions. The similarity of these
problems to those observed in aoristic analyses has indeed been mentioned and discussed before
(Baxter & Cool, 2016; Bevan & Crema, 2021; Collins-Elliott, 2019; Orton et al., 2017).

Although both aoristic (and related) analyses and SPDs have experienced methodological
advances, the latter has benefited from a considerably higher number of new approaches in the
last decade. In a recent review article, Crema (2022) has distinguished between three broad
approaches: (1) null hypothesis significance testing (NHST); (2) nonparametric ‘“reconstruc-
tive” methods, and (3) model-based inference. All three approaches overcome the core statisti-
cal issues of SPDs, either by determining whether and when we observe significant deviations
from a particular growth model, reconstructing the overall “shape”’ of the time-frequency dis-
tribution while displaying confidence envelopes to account for any fluctuations arising from
sampling error, or by fitting parameters of growth models to identify rates and timing of signifi-
cant shifts in density.

Given the similarity of the underlying statistical problem, it is worth evaluating whether
some of the solutions developed for SPDs can be adapted to situations where we typically
employ aoristic analyses. For example, the NHST approach developed by Shennan and col-
leagues (Shennan et al., 2013; Timpson et al., 2014) requires a null growth model and an algo-
rithm for ‘back-calibrating’ calendar dates into 14C ages. Details of the implementation are
discussed elsewhere (Timpson et al., 2014); here, it is sufficient to know that the core algorithm
generates, via Monte-Carlo simulation, n sets of calendar dates given a user-defined growth
model. These dates are then ‘converted back’ into 14C ages, calibrated again, and then
aggregated to generate SPDs. The process is repeated for each set, and the ensemble of SPDs
generates an envelope to which the observed curves are compared. This procedure emulates
both the impact of sampling error (each set contains the same number of dates as the observed
data) and the information loss entailed by the calibration process. Deviations of the observed
SPD from the simulation envelope are interpreted as evidence of departures from a particular
null model.

A fundamental step for this Monte Carlo test is the ability to transform dates sampled in
calendar time (given a particular growth model) into 14C ages through a back-calibration pro-
cess. To adopt a similar approach for events described with archaeological periodisation, one
would thus require an algorithm that similarly assigns each calendar date to one or more
periods (and eventually to a timespan). Although theoretically possible, a number of issues need
to be addressed. For example, archaeological events are often assigned to multiple periods
depending on the number and quality of diagnostic elements (i.e. phase assignment uncertainty).
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This uncertainty is not random and can have specific structures (e.g. pairs of phases that can be
more or less diagnostically separated; cf. Bevan et al., 2012; Crema, 2015) that cannot be mod-
elled straightforwardly. It is also worth noting that the NHST approach has several other limi-
tations, ranging from the selection of an appropriate null hypothesis to the limited information
provided by significance testing in general (Crema, 2022).

A more promising direction to undertake is to apply models that estimate the likelihood of
a particular growth model while accounting for the chronological uncertainty of each observa-
tion. Two recently developed approaches (Crema & Shoda, 2021; Timpson et al., 2021) achieve
this, and they can be adapted to the analyses of aoristic data.

Timpson et al. (2021) calculate the likelihood of a growth model given a set of observations
characterised by chronological uncertainty by effectively using probability mass functions
instead of density functions. Thus, the intuition here is to treat time as discrete units, assigning
to each year (or a larger unit) a probability. A growth model can thus be described by a multi-
nomial distribution, with a vector of probability values assigned to each calendar year. For
practical purposes, these growth models can be described by fewer parameters than the number
of calendar years within the window of analyses. For example, an exponential growth model
can be reduced to three parameters: a start date a, an end date b, and a growth rate r (see
Equation (1) in Crema & Shoda, 2021). Observed events are similarly described by a vector of
probabilities using a discrete form of Equation (1) or any other statistical distribution.

In the absence of chronological uncertainty, the probability of observing a sample at time t,
given a particular growth model, is simply given by the model probability at time t. Thus, if the
growth model is represented by the vector {Pmodel(t = 1) = 0.1, Pmodel(t = 2) = 0.2,
Pmodel(t = 3) = 0.3, Pmodel(t = 4) = 0.2, Pmodel(t = 5) = 0.15, Pmodel(t = 6) = 0.05} and the
observed sample has t = 2, the likelihood would be to 0.2 (i.e., Pmodel(t = 2)). If the observation
is also described by a vector of probabilities, the likelihood becomes the scalar product of the
model and observation vectors. For example, if the observed data are described by the vector
{Pobserved(t = 1) = 0, Pobserved(t = 2) = 0, Pobserved(t = 3) = 0.4, Pobserved(t = 4) = 0.4,
Pobserved(t = 5) = 0.2, Pobserved(t = 6) = 0}, the likelihood is equal to the sum of the products
Pmodel(t = 1) � Pobserved(t = 1) + Pmodel(t = 2) � Pobserved(t = 2) … Pmodel(t = 6) �
Pobserved(t = 6), equivalent, in this case, to 0.23. The approach clearly does not depend on how
Pobserved is obtained in the first place. Thus, a vector of probability values from calibrated 14C
dates can be used instead of a vector of aoristic weights for each calendar year. Furthermore,
although Timpson and colleagues employ a maximum likelihood approach for parameters
inference and model comparison, the approach can be extended within a Bayesian framework,
where the likelihood of a particular model would be equal to the sum of the log of the scalar
products of all observation and the log of the priors of the growth model parameters.

Crema and Shoda (2021) build their inferential framework following Timpson and col-
leagues’ intuition of using probability mass functions but taking a slightly different approach
for calculating the likelihood. The main difference in their approach is to employ a hierarchical
measurement error model where the calendar date of each observation also becomes a parame-
ter. In the case of radiocarbon dates, measurement error is modelled as a Gaussian with mean
and standard deviation obtained from a combination of the errors and transformations of the
calibration curve (see Equation (3) in Crema & Shoda, 2021). An aoristic version of this
approach would simply replace the Gaussian with a uniform distribution. Because the
timestamp of each observation is a parameter, the hierarchical approach provides a posterior
estimate of the timespan of each observation that is conditional to the overall model and the
other observations in the dataset. The approach developed by Crema and Shoda is not dissimi-
lar to other Bayesian models of radiocarbon dates, where one can simultaneously infer higher
(e.g. the start and the end of stratigraphic phase) as well as lower (e.g. the calendar date of each
14C sample) level parameters. Although an aoristic version of this approach can be
implemented straightforwardly, its practical application is limited to cases where the

A BAYESIAN ALTERNATIVE FOR AORISTIC ANALYSES IN ARCHAEOLOGY 9
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measurement error of each event can be described by a parameterised probability distribution
(uniform in this case); as such, its application will not be explored in this paper.

Parametric and nonparametric Bayesian alternatives to aoristic analysis

This paper presents and explores the robustness of parametric and nonparametric Bayesian
approaches to aoristic data. In both cases, the objective is to describe the time frequency of
some archaeological events where a vector of probabilities describes each observation over the
time blocks constituting the temporal window of analyses. In the case of the parametric
approach, the general shape of the time frequency is assumed a priori (e.g. exponential growth
and logistic growth), and the objective is to recover the parameters of a particular
growth model. In the nonparametric approach, there are no assumptions on the underlying
shape of the time-frequency data other than some degree of temporal autocorrelation (see
below). At its core, both approaches define a multinomial model with a sequence of z levels,
each corresponding to the time blocks within the temporal window of analyses. Once we infer
the z probability values of a discrete probability distribution, we can compute the likelihood
using the approach described in Section 3.1.

In the case of a parametric model, the actual number of parameters can be drastically
reduced to fewer values representing some growth curve limited by a start and end date. Thus,
for example, exponential growth can be defined by two parameters: the growth rate r and the
number of blocks z. More specifically, the probability pi assigned to the i-th time-block is simply
given by:

pi ¼
1þ rð Þi

Pz

j¼1
1þ rð Þj

ð2Þ

Here, the number of blocks z is user defined and is determined by the chronological resolu-
tion of the analyses (i.e. shorter time blocks will lead to a larger z). It follows that from an infer-
ential standpoint, we just need to estimate the growth rate r. For a given value of this
parameter, we can compute the vector of probabilities p1, p2, … pz, and as long as we can char-
acterise each of our observations as a vector of probabilities with the same length (z), we can
calculate the likelihood and estimate r. The denominator in Equation (2) normalises the growth
model into probabilities, and as such, any equation that can characterise a population size
changing over z discrete intervals can employ a similar solution (see example in Crema &
Shoda, 2021; Kim et al., 2021; Timpson et al., 2021).

When a strong assumption on the shape of the time frequency is not available or when the
objective is not the calculation of a general exponential growth rate, a nonparametric approach
might be more suitable. The term ‘nonparametric’ is a misnomer here, as the objective in this
case is to estimate the vector of probabilities p1, p2, … pz directly. The simplest way to achieve
this is to estimate directly these parameters using a multinomial distribution with a symmetric
Dirichlet distribution as a prior. Such an approach would, however, consider a wide range of
possible shapes in the time-frequency distribution of the events with no a priori assumptions to
aid the inferential process. An alternative is to restrict the range of possible shapes while keep-
ing sufficient flexibility by adding some weak assumptions on temporal autocorrelation. One
such approach is to use an intrinsic Gaussian conditional autoregressive model (ICAR;
Besag, 1974; Rue & Held, 2004) to generate a vector of temporally autocorrelated values g1, g2,
… gz and use the softmax function to convert the vector into the probabilities p1, p2, … pz. This
approach would effectively estimate the probability for given time-slice pi, conditioning it on

10 CREMA
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the values of the abutting slices pi-1 and pi + 1. As a result, the vector p1, p2, … pz will exhibit
temporal autocorrelation but still sufficiently flexible to allow for large shifts between pi and pi
+ 1 when the observed evidence is sufficiently strong. From a user standpoint, the ICAR model
would require the definition of prior of the scalar precision parameter, which would regulate
the extent to which the model assumes stronger or weaker temporal autocorrelation.

EXPERIMENT DESIGN, IMPLEMENTATION, AND THE BAORISTA R
PACKAGE

A dedicated R package called baorista has been developed to implement the two approaches
described in the previous section. At its core, baorista provides wrapper and utility functions for
fitting Bayesian models using the NIMBLE probabilistic programming language (P. de Valpine
et al., 2020; de Valpine et al., 2017). Users are required to structure their datasets either by
defining the timespan of each event (from which aoristic weights are computed assuming a uni-
form probability distribution) or by providing a matrix containing the probability of each event
at each of the time slices within the window of analyses. The package automatically estimates,
via MCMC, parameters of growth models or the vector of probabilities p1, p2, … pz, along with
the precision parameter, in the case of the nonparametric ICAR model.

In this paper, baorista is used on a series of simulated datasets to assess the robustness of the
proposed Bayesian solutions. Although a comprehensive assessment of these techniques is not
viable, four sets of experiments were carried out to answer the following questions:

1. Does a Bayesian approach provide a more accurate and precise estimate of exponential
growth rates when compared to regression analyses on aoristic sums? (Experiment #1)

2. What are the implications of selecting different time-block sizes (i.e. chronological resolu-
tion)? (Experiment #2)

3. What are the inferential limits of coarse archaeological periodisations? (Experiment #3)
4. How effectively can the nonparametric model recuperate the shape of the time-frequency

data under different sample sizes and periodisations? (Experiment #4)

Although details of each experiment differ, in all instances, simulated archaeological obser-
vations were generated by first sampling calendar dates from a known probability distribution
and subsequently assigning each date into an artificially created periodisation. Although this
procedure does not account for ‘phase assignment’ and ‘phase boundary uncertainties’ (sensu
Crema & Kobayashi, 2020), it emulates the problems associated with summation, archaeologi-
cal periodisation, and sampling error.

In Experiment #1, 60 datasets with three different sets of sample sizes (n = 100, 250, and
500) were generated and analysed. In all cases, the underlying probability distribution (based
on Equation (2)) had a growth rate of 0.002 with dates sampled between 4999 and 3002 BP.
Each replicate was assigned to a randomly generated archaeological periodisation obtained
using a breaking stick algorithm based on the Dirichlet distribution. The algorithm consists of
first randomly selecting the number of periods between 3 and 10 and subsequently sampling
probabilities from a Dirichlet distribution with α = 0.5. The so-obtained probabilities were then
used to split the duration between 5000 and 3001 BP into periods with durations proportional
to the probabilities. Finally, each sample falling within a particular period was assigned a
timespan equivalent to the start and end date of that period. Each replicate was analysed in two
ways. First, an aoristic sum was generated using 10-year resolution time blocks, and a linear
regression was fitted to the log-transformed summed probabilities to estimate the exponential
growth rate along with a 95% confidence interval. The same data were then analysed using the
Bayesian parametric approach described in the previous section, recording in each case the 95%

A BAYESIAN ALTERNATIVE FOR AORISTIC ANALYSES IN ARCHAEOLOGY 11
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highest probability density interval (HPDI) of r. MCMC settings were based on default values
implemented in baorista (four chains with 100,000 iterations, half discarded for burn-in and
with thinning parameter set to 10). The fitting process did not generate any convergence warn-
ings. The prior of the growth rate was modelled using an exponential with a rate of 1.

Experiment #2 loosely followed a similar structure to Experiment #1, but with a larger
number of replicates (1000), each with a randomly assigned ‘true’ growth rate (randomly sam-
pled from between �0.002 and 0.002), sample size (between 100 and 500), and periodisation
(using the same approach as in Experiment 1). For each replicate, I considered two different
time-block sizes, one with a coarse setting of 100 years and one with a finer resolution of
10 years. I recorded for each replicate whether the 95% confidence interval (for the regression
over aoristic sums) or the 95% HPDI of r included the ‘true’ growth rate or not. MCMC and
prior settings were the default of baorista and the same used in Experiment #1.

Experiment #3 explored the impact of periodisation in the inferential process, more specifi-
cally identifying whether the Bayesian approach introduced here is capable of correctly
assessing instances of indeterminacy. The experiment had two stages. First, I considered a range
of parameter combinations (growth rate r and inflexion point m) of a logistic growth model
ranging between 800 and 301 BC, and computed the cumulative probability mass over the inter-
vals 800–501 and 500–301 BC, representing the time-span of two hypothetical archaeological
periodisations. Because all dates falling within each period are assigned to the same timespan,
parameter combinations yielding identical cumulative probability mass over the two intervals
are indeterminable. I thus selected one of the so-obtained combinations of parameters
(r = 0.01154545 and m = 302 BC) and sampled 500 calendar dates from the model. Each date
was then associated with a timespan based on the abovementioned two periods. The resulting
aoristic dataset was then fitted with a logistic growth model using a flat prior for the growth
rate (r � Uniform[0.0001,0.03]) and the inflexion point parameters (m � Uniform[301,800]). As
for Experiments #1 and #2, default settings were used for the MCMC.

Finally, Experiment #4 assessed the inferential power of the nonparametric approach by
determining whether the ICAR model was able to correctly recover the shape of a time-
frequency distribution under a combination of different sample sizes (n = 50 and n = 500) and
periodisation (3, 5, and 8 periods, with the duration of each modelled using the Dirichlet distri-
bution with α = 2). The model was fitted over four chains with 4 million iterations, 3 million
discarded for burn-in and parameters sampled every 100 steps.

All scripts required for replicating the analyses presented here can be found in a dedicated
GitHub repository (https://github.com/ercrema/beyond_aoristic), archived in zenodo (https://
doi.org/10.5281/zenodo.11163687), whereas the source code and a quick guide for the baorista
R package can be found in a separate repository (https://github.com/ercrema/baorista).

RESULTS

Experiment 1

Figure 2 compares the precision and the accuracy of the regression of aoristic analyses and the
direct Bayesian approach proposed here. The general expectation of a robust inferential tool is
to have stable and high accuracy levels and increased precision (i.e. narrower confidence inter-
vals) with larger samples. There are compelling differences between the two methods in this
case. When growth rates are estimated from aoristic sums, the accuracy is generally low, with
most the confidence intervals not including the ‘true’ growth rate (here equivalent to 0.002).
The precision of the estimate does seem to be weakly associated with sample sizes, but there are
significant differences across replicates, indicating how the approach is not robust to sampling
error and underlying archaeological periodisations.
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In contrast, the Bayesian approach shows remarkably higher and consistent levels of
accuracy, with only 4 replicates out of 60 sets failing to include the true growth rate. Although
there are still some differences between replicates, there is a far more consistent asso-
ciation between precision and sample sizes, with larger number of events leading to narrower
HPDIs.

F I GURE 2 Comparison of growth rate estimates based on regression over aoristic sums (left column; 95%
confidence intervals) versus direct Bayesian approach (right column; 95% highest posterior density intervals) on
simulated datasets with different sample sizes but same ‘true’ growth rate (equal to 0.002). Intervals shown in red do not
include the true rate within its range.

A BAYESIAN ALTERNATIVE FOR AORISTIC ANALYSES IN ARCHAEOLOGY 13
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Experiment 2

Results of Experiment #2 further highlight the superior accuracy of the Bayesian approach over
the regression on aoristic sums. The objective in this case is to compare the two methods with a
broader range of settings but also to determine whether the choice of the time-block size has
any impact on the inferential process. Figure 3 shows how this is indeed the case, although with
opposite outcomes for the two approaches. Estimates based on aoristic sum show generally
poor accuracy across different sample sizes (n) and ‘true’ growth rates (r), although settings
based on coarser time blocks are more likely to infer r correctly.

Once again, the Bayesian approach shows higher levels of accuracy, but this time, the rela-
tionship with the choice of time-block size is the opposite. When the resolution is set to 10 years,
the model accurately estimated the true growth rate nearly 95% of the time, but this value fell
just below 90% when the resolution was decreased to 100-year time blocks.

F I GURE 3 Comparison of growth rate estimates based on regression over aoristic sums (left column) versus direct
Bayesian approach (right column) under different sample sizes (n), true growth rate (r), and time-block resolution
(100 and 10 years). Red dots show replicates where the confidence interval or higher prediction interval did not include
the true rate.
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Experiment 3

The idiosyncratic and context-dependent nature of archaeological periodisation limits the range
of experimental analyses one could pursue. Still, it is possible to examine a particular example
that illustrates the limitations imposed by the nature of relative chronology. A simple way to
conceptualise this is to consider periodisation as information loss, where different parameter
settings of a particular growth model leading to different time-frequency distributions become
effectively undistinguishable. Figure 4a, shows a hypothetical example of three logistic growth
models with different intrinsic growth rates (r) and inflection points (m), but having the same
cumulative probability mass for the intervals 800–501 and 500–301 BC. The three curves are

F I GURE 4 Coarse archaeological periodisation and indeterminacy: (a) three parameter combinations of r and m
yielding identical cumulative probabilities for the specific periodisation (Phases I and II, shown as different grey bars on
the top); (b) parameter combinations of r and m yielding a cumulative probability of 0.13 for Phase I and 0.87 for Phase
II; (c) posterior fitted model obtained analysing on a simulated dataset generated with r = 0.01155 and m = 302 (solid
line on panel a); (d) joint posterior of r and m of the same analysis.

A BAYESIAN ALTERNATIVE FOR AORISTIC ANALYSES IN ARCHAEOLOGY 15
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obviously different, but because all dates falling within 800–501 BC are treated in the same
way, any shape variations of the curve within this interval are effectively lost when the chronol-
ogy is based on these periodisations. Figure 4b is the result of a systematic evaluation of differ-
ent parameter combinations of r and m, with instances showing a cumulative probability mass
of 0.13 between 800 and 501 BC highlighted in red. Although this captures a wide range of
shapes, the archaeological record associated with these are expected to yield the same propor-
tion of events for the first and the second of our hypothetical phases.

The objective of Experiment #3 is to determine whether the Bayesian approach proposed
here can recover the structure of indeterminacy imposed by the archaeological periodisation.
Thus, samples generated from any parameter combinations along the red dots in Figure 4b
should yield similar results, and the posterior should capture the range of indeterminate param-
eter combinations. Figure 4c,d does indeed show that the proposed Bayesian solution can
achieve this. The posterior of time-frequency distribution (Figure 4c) shows an envelope captur-
ing a wide range of shapes that includes the extreme cases shown in Figure 4a. Similarly, the
joint posterior of r and m (Figure 4d) does recuperate the spectrum of indeterminate parameter
combinations shown in Figure 4b.

Experiment 4

Figure 5 shows the six scenarios explored in Experiment #4, with the underlying probability dis-
tribution of the time frequency superimposed over the aoristic sum for different sample sizes
and periodisations. Unsurprisingly, instances with a larger number of samples and periods
(Figure 5f) show closer similarity between the aoristic sum and the shape of the underlying
time-frequency distribution. However, in all cases, spurious fluctuations are also visible.

Results of the nonparametric Bayesian model (Figure 6) show that in all scenarios, the 95%
HPDI includes the actual shape of the time-frequency distribution from which the artificial
samples were generated. The precision of the posterior is conditioned by both the number of
samples available and the number of archaeological periodisations, although the latter appears
to have a more substantial impact, with the two-period scenario (Figure 5a,b) showing the wid-
est HPDI ranges.

DISCUSSION

The experiment design devised in this paper is limited to a narrow set of circumstances where
the observed data are characterised exclusively by within-phase uncertainty (Crema &
Kobayashi, 2020). Yet, employing these ‘tactical simulations’ (Orton, 1973) enables us to deter-
mine the inferential power of the proposed method and to compare its performance to aoristic
analyses. Despite the additional cost in computing performance (see below), the experiments
demonstrate that both parametric and nonparametric approaches offer a more robust alterna-
tive to aoristic analysis.

Results of Experiments 1–3 show that the parametric approach can provide a superior accu-
racy in recovering the ‘true’ parameters of a model under a variety of different scenarios. As for
SPDs, direct analyses of aoristic sums for statistical inference are unwarranted, and both Exper-
iments #1 and #2 demonstrate the implications of pursuing this. Regression estimates over
aoristic sums behave inconsistently, with generally a low accuracy and the size of the confidence
interval severely impacted by factors external to sample size. In contrast, the parametric Bayes-
ian approach consistently offers higher accuracy, with larger sample sizes yielding higher accu-
racy as expected.
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F I GURE 5 Aoristic sum on simulated data sampled from the same underlying distribution (dashed red line) with
different periodisations (top grey bars) and sample sizes (n = 50 for (a), (c), and e; n = 500 for (b), (d), and (f)).
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F I GURE 6 Nonparametric Bayesian estimates of p1, p2, … pz on simulated data sampled from the same
underlying distribution (dashed red line) with different periodisations and sample sizes (n = 50 for (a), (c), and (e);
n = 500 for (b), (d), and (f)).

18 CREMA

 14754754, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/arcm

.12984 by C
am

bridge U
niversity L

ibrary, W
iley O

nline L
ibrary on [17/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Although the fundamental methodological framework of the parametric approach pres-
ented in Experiments 1–3 is the same as the one introduced for radiocarbon dates by Timpson
et al. (2021), the nonparametric ICAR approach has not been explored previously. Experiment
#4 shows that the model does capture the uncertainty of the estimates, showing larger posterior
envelopes when sample sizes are small and archaeological periodisation are coarse. The ‘true’
shape of the frequency distribution was contained within the 95% HPDI, but the extent to
which the model can provide an accurate and precise recovery is somewhat limited. This is not
surprising and reflects the amount of information provided as assumption in the inferential pro-
cess. In other words, a satisfactory performance can be achieved by better quality data (large
sample sizes and fine-grained periodisation) or stronger assumptions in the shape of the time
frequency distribution (i.e., using a parametric approach).

Aside from the choice between parametric and nonparametric approaches, the methods
introduced here require additional decisions to be made by the analyst. As for aoristic analysis,
both the parametric and the nonparametric are based on estimates over user-defined time
blocks. Experiment #2 demonstrates that a finer resolution (i.e. smaller time blocks) provides
substantially higher accuracy. This is most likely due to information loss associated with coarser
resolution, where the boundary between periods and phases can be out of sync with the
breakpoints of the time blocks. The general recommendation is thus to use the finest resolution,
that is, a yearly time block. This choice, however, comes with an added computational cost that
can quickly become prohibitive in the case of the nonparametric approach,i particularly when
dealing with larger sample sizes and/or larger window of analyses. In this case, a compromise
can be achieved by using a slightly coarser resolution, bearing in mind the potential loss in the
accuracy of the estimated parameters.

The choice of the prior is another key aspect of the inferential process, particularly in the
case of the parametric approach. As for any standard Bayesian approaches, priors should be
weakly informative, excluding unrealistic scenarios but allowing the model to flexibly learn
from the data. The impact of these choices should also be properly explored. In some circum-
stances, such as the scenario presented in Experiment #3, the choice of the prior can lead to
major differences. Using nonflat prior for r and m would not recover the full range of indetermi-
nate outcomes shown in Figure 4b, as effectively we are stating that some values of r and m are
more likely before even looking at the data. However, if using a nonflat prior is justified on
independent grounds, the Bayesian approach can reduce indeterminacy and greatly aid the
inferential process.

It is worth highlighting here some of the limitations of the approach proposed in this paper.
First, unevenly sized and/or coarse periodisations as well as small sample sizes can severely limit
the inferential power. Admittedly, this is not a negative aspect of the approach advocated here.
A good statistical method should not misguide the analyst and should fully capture the uncer-
tainty in the data. Results of Experiments #3 and #4 are promising in this regard. Still, it is dif-
ficult to fully assess the extent to which the model can handle appropriately high levels of
uncertainty in the input data. One aspect that was not explored here is the extent to which com-
plex overlapping phases, which may generate artificial peaks in aoristic sums, are handled by
the solutions introduced here. The issue is particularly pertinent for the ICAR model, which
might be similarly affected by such artefacts. It is possible that the choice of a suitable prior, for
example, one assuming larger expected values for the scalar precision (i.e. stronger temporal
autocorrelation), might counter such effects. However, using a strong prior will also lead to flat-
ter time series, effectively trading false positives (i.e. artificial peaks) for false negatives
(e.g. potentially missing real peaks). Undoubtedly extreme caution is required in these
circumstances.

Second, parametric approaches are strictly dependent on the selection of the growth model.
Fitting a logistic growth model when the true time-frequency distribution is characterised by a
rise-and-fall pattern can lead to problematic inference. The only exception to this might be the
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exponential growth model, whose parameter could still be interpreted the average growth rate
within the time window of analyses. In the case of SPDs, posterior predictive checks are possi-
ble (Crema & Shoda, 2021; Timpson et al., 2021) and can even reveal when interesting devia-
tions from the model are observed. Implementing similar approaches with aoristic data is not
trivial, except for instances where there is a one-to-one association between a calendar date and
an archaeological period. A potential way to tackle this approach is to fully account for the
error structure of the data, that is, estimate the probability of each event assigned to a particular
timespan.

Third, the models introduced here do not account for uncertainties in the start and end date
of timespans (i.e. phase-boundary uncertainty). When this information is available
(e.g. Crema & Kobayashi, 2020), one could potentially iteratively sample possible timespans
and generate a custom probability distribution to represent the timespan of each event.
Although this approach would account for additional levels of uncertainty, it would effectively
‘collapse’ different forms of uncertainty into a single vector of probabilities across all time
blocks, ignoring consequently any interdependencies. Alternative approaches would require
additional layers in the hierarchical model where the uncertainty of archaeological periodisation
and the inference on the time-frequency distribution is carried out simultaneously. Further stud-
ies are required to explore the analytical and computational challenges this and possibly other
solutions require.

Finally, it is worth mentioning that other attempts to provide a Bayesian framework to
aoristic analysis are currently being developed in other fields as well. Van Lieshout and
Markwits (van Lieshout & Markwitz, 2022) approach the problem as a marked point process,
whereas Briz-Red�on (Briz-Red�on, 2023) associates a uniform prior to each observation, effec-
tively carrying out a measurement error model similar to the one implemented by Crema and
Shoda (2021) for radiocarbon dates. Both solutions offer similar advantages to the solutions
implemented here, although they are not designed to deal with instances where a user-defined
vector of probabilities is employed to describe the most likely timing of the event within its
timespan.

CONCLUSIONS

Developing a robust and general inferential tool for events described by archaeological
periodisation is a challenging task. In contrast to radiocarbon dating, there are no formal prin-
ciples that translate the uncertainty associated with the timing of an event into a probability dis-
tribution, with much of the legwork left to the subjective guesswork of experts. Start and end
dates of archaeological periods are just general chronological reference points and not designed
to be approached as formal analytical units. Yet, the bulk of the archaeological record is
described within this chronological framework. Aoristic analysis and related techniques offer a
straightforward and easy-to-implement solution that allows archaeologists to explore the rich
untapped resource.

I argue that even in an ideal condition, where the only form of uncertainty is determining
when an event occurred within a period or phase, aoristic analysis a highly problematic
approach for three reasons: (1) the summing of aoristic weights is mathematically unwarranted;
(2) the nonrandom nature of archaeological periodisation can lead to misleading artefacts in
aoristic sums; and (3) aoristic analysis is at its best a descriptive rather than an inferential
statistic.

The paper introduced two Bayesian approaches and an associated R package that can pro-
vide an alternative to aoristic analysis in archaeology. The two approaches are tailored for dif-
ferent sets of objectives, but in both cases, the minimum requirements are the same for the
aoristic analysis, with each archaeological event described by a chronological timespan or a
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vector of probability values for each time block. Although a comprehensive assessment of the
robustness of the proposed approach was not possible, a series of experiments have been carried
out to determine its accuracy and precision. Under all circumstances, the results showed a supe-
rior performance to aoristic analysis. The parametric approach can recuperate key values of
interest accurately and consistently while simultaneously capable of formally capturing
instances of high indeterminacy dictated by the nature of the underlying periodisation. Simi-
larly, the ICAR-based nonparametric can visualise the extent of the uncertainty dictated by
sampling error and periodisation, providing a more sound and cautious basis for the visual
inspection of archaeological time-frequency data.
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