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ABSTRACT

A wide range of theories and methods inspired from evolutionary biology have recently been used to
investigate temporal changes in the frequency of archaeological material. Here we follow this research
agenda and present a novel approach based on Approximate Bayesian Computation (ABC), which enables
the evaluation of multiple competing evolutionary models formulated as computer simulations. This
approach offers the opportunity to: 1) flexibly integrate archaeological biases derived from sampling and
time averaging; 2) estimate model parameters in a probabilistic fashion, taking into account both prior
knowledge and empirical data; and 3) shift from an hypothesis-testing to a model selection approach.
We applied ABC to a chronologically fine-grained Western European Neolithic armature assemblage,
comparing three possible candidate models of evolutionary change: 1) unbiased transmission; 2)
conformist bias; and 3) anti-conformist bias. Results showed that unbiased and anti-conformist trans-
mission models provide equally good explanatory models for the observed data, suggesting high levels of
equifinality. We also examined whether the appearance of the Bell Beaker culture was correlated with
marked changes in the frequency of different armature types. Comparisons between the empirical data
and expectations generated from the simulation model did not show any evidence in support of this
hypothesis and instead indicated lower than expected dissimilarity between assemblages dated before
and after the emergence of the Bell Beaker culture.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

In the last 30 years similarities between genetic and cultural
evolutionary processes have fomented a rich history of cross-
disciplinary studies bridging biological and social sciences, often
under the umbrella-term of dual inheritance, or gene-culture
coevolution theory (Cavalli-Sforza and Feldman, 1981; Boyd and
Richerson, 1985; Henrich and McElreath, 2003). Archaeologists
have not been immune to this cross-fertilisation, and their active
commitment is testified by a variety of studies, including (but not
limited to) reconstructions of cultural phylogenies (e.g. O'Brien and
Lyman, 2003; Collard et al., 2006; Cochrane and Lipo, 2010; O'Brien
et al., 2014), analysis of dynamics in demic and cultural diffusion
(e.g. Coward et al., 2008; Steele, 2009; Fort, 2012), modelling and
analysis of subsistence (MacDonald, 1998; Richerson et al., 2001;
Lake and Crema, 2012) and technological change (Bettinger and
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Eerkens, 1999; Fitzhugh, 2001; Andersson, 2011), enquiries on
social inequality (e.g. Bentley et al., 2005; Shennan, 2011b), and
identification of patterns of social learning in relation to changes in
demography (e.g. Shennan, 2001; Henrich, 2004; Conolly et al,,
2008; Powell et al., 2009), as well as the properties (e.g. Eerkens
and Lipo, 2007; Lycett and von Cramon-Taubadel in press) and
frequency of cultural variants (e.g. Neiman, 1995; Shennan and
Wilkinson, 2001; Kohler et al., 2004; Steele et al., 2010).

This paper follows this rich tradition of studies, focussing on one
of the most long-lasting enquiries of our discipline: the patterns
and the processes of temporal change in the frequency of cultural
variants. Our starting point is the notion of “unbiased” cultural
transmission (Boyd and Richerson, 1985), a model of social learning
where the probability of adopting a cultural variant is a function of
its relative frequency in the population. Whilst this implies that the
frequency of each cultural variant remains unchanged over time,
the random nature of this copying process, combined with episodes
of cultural innovation where new variants are introduced in the
population, determine fluctuations in the frequencies of each
variant. Neiman's pioneer work (1995) highlighted the striking
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resemblance of this process with the genetic theory of neutral
evolution (Crow, 1986; Crow and Kimura, 1970; Kimura and Crow,
1964; Ewens, 1972), which provides mathematical foundations
for determining how the frequency of cultural variants should be
distributed for a given population size and innovation rate.

Thus, if we could calculate some statistical measure of how
different cultural traits in a given archaeological assemblage are
distributed and at the same time estimate what we should expect
as a result of an unbiased cultural transmission, we should be able
to obtain a quantitative insight on the evolutionary process behind
the observed data. Neiman (1995) laid the foundation of this
approach by introducing to the archaeological audience a diversity
measure known as 6. Its theoretical estimate, under neutral evo-
lution/unbiased transmission, is 2N.u, where N, is the effective
population size, here defined as the number of entities actively
contributing to the reproduction of cultural variants, and u is the
rate of cultural innovation (see Neiman, 1995 for a detailed dis-
cussion on how this equation was obtained). Empirical estimates of
6 can be calculated in two ways. The first approach is to identify the
value of 6 that satisfies the following equation (Ewens, 1972):

s—1 0
i=

where k is the observed number of cultural variants among a
sample of size s. Since equation [1] does not have an analytical
solution, one can obtain a maximum likelihood estimate which is
referred to as tg. The second empirical estimate of ¢ is known as tg,
which is obtained by calculating the reciprocal of the sum of the
squared proportions of each variant minus 1. If the empirical esti-
mates tg and tg are equivalent to the theoretical expectation 2N,
the observed frequency of cultural variants is indistinguishable
from patterns expected by an unbiased cultural transmission,
whilst dissimilarities would suggest an alternative process behind
the observed pattern. The comparison between tg (or tg) and 2Neu
does not, however, provide a significance level. Two statistical tests
can overcome this problem by using alternative summary statistics:
the Ewens—Watterson test (Watterson, 1977, 1978), which com-
pares theoretical and empirical estimates of the homogeneity sta-
tistic F (equivalent to the summed squares of the proportion of each
variant); and Slatkin's exact test (Slatkin, 1994, 1996), which com-
pares the observed frequency distribution of the cultural variants
against all possible configurations expected by the Ewens sampling
distribution for specific values of s, the sample size, and k, the
number of variants (see Steele et al., 2010 for archaeological ap-
plications of both tests).

A number of archaeological studies have applied these tech-
niques to investigate the observed variation in the frequency of
cultural variants. Shennan and Wilkinson (2001) analysed the pot-
tery assemblage of Linearbandkeramik (LBK) early Neolithic settle-
ments in western Germany and compared tg against six possible
values of # (based on different combinations of two estimates of u
and three estimates of N,). The result showed a strong divergence in
most cases, leading the authors to reject the null hypothesis. Given
that the observed diversity measure tg was consistently higher than
#, Shennan and Wilkinson suggested that the pattern of cultural
transmission behind the observed archaeological record was
affected by an anti-conformist bias, whereby variants with smaller
frequencies have a higher probability of being copied compared to
what we might expect in an unbiased transmission process. Kohler
et al., (2004) used the same technique and examined the ceramic
materials at Pajarito Plateau in New Mexico. Comparisons of the
empirical estimates and the theoretical expectations of ¢ indicated
the opposite pattern to the one observed by Shennan and Wilkin-
son, leading the authors to postulate the presence of a conformist

transmission bias, whereby variants with higher frequencies have a
higher probability of being copied compared to what we might
expect with an unbiased cultural transmission.

These examples show how the biological theory of neutral
evolution can be successfully applied to cultural domains, but at the
same time highlight several issues. First, different forms of sam-
pling bias affecting archaeological assemblages might lead to
erroneous estimates in the relationship between observed and
expected values of §. While the problem of sample size is tackled by
equation [1], the problem of time averaging has been virtually
ignored by most empirical studies. Archaeological assemblages are
artificially defined and temporally varying sample blocks extracted
from what is in fact a continuum. Other things being equal, as-
semblages associated with time blocks of longer duration are likely
to have higher values of k, in turn determining higher estimates of
tg. A recent simulation study by Premo (2014) has shown that an-
alyses based on the evaluation of § are prone to a type I error (i.e. an
incorrect rejection of the null hypothesis) when the sample data is
the result of a cumulated archaeological assemblage (see also
Madsen, 2012). Alternative methods for detecting unbiased cultural
transmission, such as the power-law model proposed by Bentley
and colleagues (Bentley and Shennan, 2003, Bentley et al., 2004)'
appear to be more robust in this case, although the effect of sam-
ple size and the duration of the assemblage formation are still
relevant (Premo, 2014).

Second, direct computation of § requires reliable estimates of N,
and u. This is generally obtained from an inferential exercise based
on external proxies (e.g. number of novel traits appearing in a new
phase, number of residential features, etc.), but often requires the
adoption of several alternative estimates to better incorporate
competing scenarios and interpretations. This will ultimately lead
to the generation of multiple variants of the same null hypotheses.
For instance, Shennan and Wilkinson (2001) estimated two
possible mutation rates and three possible effective population
sizes, leading to a total of six version of the same null model. Given
the wide range of possible values that can be generated by the same
process of neutral evolution, under different effective population
size and mutation rate, this approach might potentially lead to a
type I error. Furthermore, conflicting results will require further
investigation in support of specific null hypotheses.

Third, Steele et al. (2010) have shown how the failed rejection of
the null hypothesis does not imply that the generative process was
in fact the result of unbiased transmission (type II error). Their
analyses of Hittite ceramic bowl types by means of Slatkin's exact
test and the Ewens—Watterson homozygosity test failed to reject
the null hypothesis. Nonetheless, further examination of the char-
acteristics of the bowls showed how some features exhibited a
significant positive correlation with the abundance ranking, which
should not be expected under neutrality. Both the possible exis-
tence of multiple null models and the potential convergence in
pattern of different generative process can be generalised to the
well-known problem of equifinality (Von Bertalanffy, 1968:132,
Premo, 2010 for a more recent discussion): a variety of different
evolutionary mechanisms can potentially produce similar distri-
butions in the frequencies of cultural variants.

Fourth, the model of neutral evolution discussed above assumes
equilibrium conditions in the system of interest. This is not necessarily
the case, as the underlying generative process could potentially

! Bentley and colleagues (Bentley and Shennan, 2003, Bentley et al, 2004)
identified a power-law distribution in the frequency of cultural variants in both
empirical and simulated data. Their simulation data suggest that the parameter a,
representing the negative slope of the power-law fit on a log—log plot, can be
approximately estimated as 0.1042 x In(uN) + 1.48.
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change its properties (e.g. a change in the innovation rate, or a tran-
sition from an unbiased to a conformist biased transmission), and the
time to the new equilibrium will depend on the initial condition of the
system. A recent paper by Kandler and Shennan (2013) has tackled
this problem by shifting the focus to the number of cultural variants
K(ty,t2) surviving the transition from a given time-period t; to the
subsequent time period tp, rather than the frequency of cultural var-
iants at a given time period t. Their mathematical model makes it
possible to define the probability distribution of K(ty,t;) taking into
consideration initial conditions of the system (the frequency of cul-
tural variants at t1), variation in population size and mutation rate, and
the temporal duration of the evolutionary process. They applied their
model to a case study based on LBK ceramic assemblages from
southwest Germany, showing how the empirically observed number
of surviving variants was much higher than the one expected from
neutral evolution. They further explored this divergence by devel-
oping a frequency-biased model (which includes both conformist and
anti-conformist biases), showing that a transmission process with an
anti-conformist bias has a higher fit to the observed data compared to
the neutral model.

In order to overcome some of the issues raised by these previous
works, we propose a simulation-based approach using Approxi-
mate Bayesian Computation (ABC, Beaumont et al., 2002, Csilléry
et al,, 2010). This method offers several advantages that enable a
more flexible approach for the analysis of changes in the frequency
of cultural variants.

First, direct estimates of the model parameters, a key element in
the direct evaluation of f (c.f. Shennan and Wilkinson, 2001; Kohler
etal., 2004) and in the non-equilibrium model proposed by Kandler
and Shennan (2013), are substituted by a Bayesian inferential
framework. Thus, instead of defining single or multiple estimates of
each parameter (e.g. the innovation rate u), we define a probability
distribution known as a prior. This will formally define the range of
values that we assume for a given parameter as well as the degree
of belief we associate with each distinct value. The combination of
this prior knowledge with the probability of obtaining the observed
pattern for different parameter combinations of the proposed
model, allows us to generate a posterior estimate of each param-
eter. Again, these will be probability distributions rather than point
estimates, an update of the prior which incorporates the informa-
tion from the empirical data as well as the specifics and the un-
certainties of a given model.

Second, we abandon the hypothesis-testing approach and adopt
an inferential framework based on multi-model selection (Burnham
and Anderson, 2002). We thus formally integrate the notion that “all
models are wrong” and seek to define the “best” model among a set
of alternative candidates. The hypothesised model that has the
highest fit to the empirical data and relies on the smallest number of
assumptions (based on the principle of parsimony) will be selected.
In the case of equifinality, two or more candidate models will be
indistinguishable from a model selection perspective.

Third, following Kandler and Shennan (2013), we emphasize the
importance of the non-equilibrium conditions of the system and
hence measure differences in the frequencies of variants between
different assemblages rather than looking at summary statistics
(such as diversity indices) describing the frequencies observed at
individual phases. The choice of summary statistic is undoubtedly a
critical element in the selection between candidate models, as their
sensitivity to the variation in the underlying process will differ. It
should be noted that the choice in the present study has been partly
driven by the specific research question of our case study, and that
the proposed method can be adapted to any alternative measure of
culture change.

Lastly, we tackle the problem of sample size and time averaging
by integrating these processes in the simulation. More generally,

the key advantage of ABC resides in the fact that models can be
defined as computational algorithms, enabling a flexibility that is
harder to achieve with a pure equation-based solution.

The paper is structured as follows. Section 2 introduces three
evolutionary models of cultural change that can be applied in a
broad set of contexts; Section 3 presents a generic ABC-based
workflow that can be applied for studies of cultural change; Sec-
tion 4 illustrates our case study; and Section 5 concludes the paper
by summarising our main points and highlighting the limits and the
potentials of the proposed method.

2. Evolutionary models of cultural change

For the purpose of our paper we chose to explore three simple
models of cultural change. Although the simulation-based
approach allows us to integrate additional assumptions to incor-
porate a wide array of biases in the transmission process (see Boyd
and Richerson, 1985; Henrich and McElreath, 2003), we purposely
chose to ignore biases favouring specific cultural variants based on
their intrinsic properties (i.e. content-bias transmission), or biases
derived from external cues unrelated to the variant of interest (i.e.
model-based biased transmission). This choice was dictated by a
preference for the most parsimonious and general models of cul-
tural evolution as well as the lack of data concerning potential
content and model biases (but see Mesoudi and O’Brien, 2008a,
2008b). We thus chose to explore an unbiased neutral model of
cultural transmission and two different forms of frequency bias:
anti-conformism and conformism.

2.1. Unbiased transmission (UB)

Unbiased cultural transmission (or neutral evolution) assumes
that the probability of copying any given cultural trait is propor-
tional to the frequency of that trait. Consequently, changes in the
frequencies of variant will result from random events in the
copying process (i.e. drift) and the introduction of novel variants
through innovation. More formally, the probability m; of copying a
trait i in a given unit of time is defined by the following equation:

Zmi(lN_ ,LL) (2)

T =

where z is the frequency of cultural transmission, m; is the existing
instances of trait i (e.g. the number of potential teachers possessing
the trait i), u is the probability of introducing a new cultural variant
(e.g. a new arrowhead type), and N is the number of potential
“teachers” (i.e. the agents in the agents-based simulation), each
displaying a single cultural variant. Notice that we do not consider
N as the effective population size as we no longer follow the
standard assumptions of neutral evolution (i.e. the Wright—Fisher
model of reproduction). In fact, when z, the frequency of social
learning, is smaller than 1, cultural transmission does not occur all
the time for all individuals, and as a consequence the number of
social learners will become smaller than the number of teachers.’
This parameter will also portray overlapping generations (as in-
dividuals will engage in social learning at different time-steps>),
and more importantly will allow us to calibrate the correspondence

2 If an individual has a trait j with frequency mj, the probability of losing such
trait in a given time-step is u + zZ(N-m))N-" — u z(N-m;)N~". This combines the
probability of innovating and the probability of copying another variant.

3 It is worth noting that the copying is still between different generations, and
hence this model is different from the so-called Moran model of reproduction
which includes within generation copying (Moran, 1958; see Aoki et al., 2011 for its
application in cultural evolution).
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between simulation and real world time (e.g. with z= 0.1, assuming
that a simulation time-step corresponds to a single year, social
learning will occur on average once a decade).

2.2. Frequency biases: conformism (CB) and anti-conformism (AB)

equation [2] assumes that the frequency of a trait is directly
proportional to its probability of being adopted, with the term u
having the same effect for all traits. As discussed in Section 1, one of
the most common alternatives to the neutral model is a frequency
bias where either: 1) less common traits have higher chance of
being adopted (anti-conformism); 2) or common traits have an
increased probability of adoption (conformist bias) compared to an
unbiased model. We can portray both processes with the following
equation®:

(1-w)(mN-T)

b
Z]k:l (mN-T1)

1-b

(3)

=2z

Where k is the number of variants, and b is a parameter that con-
trols both the direction and the magnitude of the bias. When b > 0,
rare traits will have higher probability of adoption compared to
those predicted by equation [2] (anti-conformism), and conversely
when b < 0, common traits will have a higher n than the one ex-
pected from an unbiased cultural transmission (conformism).’
Furthermore, the greater is the value |b|, the stronger is the effect
of the frequency bias in both directions. Notice also that when
b = 0, the model is mathematically equivalent to equation [2],
making the unbiased cultural transmission a special case of fre-
quency bias. As for equation [2], the parameter z captures the fre-
quency of cultural transmission, whilst u indicates the probability
of innovation.

2.3. Cultural dissimilarity

The four parameters N, y, z, and b described in equations [2] and
[3] can portray a wide range of possible evolutionary dynamics
detectable by a variety of summary statistics. Here we chose to use a
measure of dissimilarity, D, which quantifies difference in the fre-
quency of cultural variants between any two blocks of time t; and t5.
The rationale of this choice is dictated by the assumption that
evolutionary processes are characterised by temporal autocorrela-
tion, with D(t1 t,), the dissimilarity between the frequency of cultural
variants at t; and tp, positively correlated with A(t;t;), the temporal
distance between t; and t,. Different conditions of the same evolu-
tionary process, however, are expected to generate different re-
lationships between D(t;t2) and A(ty t2). For example, high mutation
rates is likely to determine a higher turnover rate (see Bentley et al.,
2007), leading to higher values of D(t1t,) for the same A(t1t;). Here,
we use the Morisita—Horn index (Morisita, 1959; Horn, 1966), a
measure of dissimilarity given by the following equation:

4 Models of conformist/anticonformists bias have been proposed by a number of
scholars following the pioneer work by Boyd and Richerson (1985). Mesoudi and
Lycett (2009) portray the bias as the selection of the single most (or least)
frequent trait in the population, with a parameter representing the frequency by
which this process occurs. Kandler and Shennan (2013) define the bias as a
continuous function that is not limited to the selection of a single most common or
rare variant. We followed the second approach as it encapsulates potential errors in
detecting common/rare variants, but we also developed a simpler equation better
suited for the application of ABC.

5 The bias parameter is theoretically capable of portraying a high degree of
variation in frequency bias, including extreme forms of anti-conformism where the
correlation between 7 and m becomes negative (when b > 1), hence rare traits
becoming more likely to be adopted than frequent ones.

25K mi(t) mi(ty)
k 2 k ) 2
Seme) | S mie) )M(t1)M(t2)

(4)

Dyu(ti,t2) =1 -
< M(t;)? M(t,)?

where m; (t;) and m; (t;) are the counts of the variant i at time t; and
t; and M(t;) and M(ty) are the total sample size for each time-
blocks. equation [4] essentially returns a measure of overlap,
expressed by a numerical index bounded between 0 (identical as-
semblages) and 1 (assemblages with no variants in common).
Morisita—Horn dissimilarity is also independent of sample size (see
Wolda, 1981), and hence well suited for archaeological contexts.

Fig. 1 shows the average and the 95% percentiles of the Mor-
isita—Horn dissimilarity Dyy for values of A between 50 and 2000
time-steps, obtained from a total of 1000 simulation runs of the
three models proposed above. The parameter space portrayed in
Fig. 1 shows a positive correlation in most scenarios, with some
exceptions observed where b = —0.01, z > 0.5, and N = 1000,
when high levels of conformism enforce the fixation of few vari-
ants with no turn-over. Fig. 1 also shows the complex interplay
between the four parameters and how different combinations can
easily generate similar patterns, highlighting potential equifinality
issues.

3. The Approximate Bayesian Computation (ABC) framework

We used an ABC framework to 1) determine probabilistic esti-
mates of each of the three models described above and 2) select the
“best” candidate model on the basis of its fit and complexity.
Detailed discussion of the statistical principles and the broad
inferential framework of ABC in biology can be found elsewhere
(GCsilléry et al., 2010 for a recent review; see also Kandler and
Laland, 2013 for its theoretical application on cultural evolution
studies and Bramanti et al., 2009 for an analysis of aDNA data to
address the probability of genetic continuity between Mesolithic
foragers and early Neolithic farmers in Europe); here we highlight
its core algorithm and how this can be applied for our purpose.

3.1. Parameter estimation

The parameter estimation process is rooted in the rejection al-
gorithm originally developed in population genetics and can be
summarised as follows:

(1) Given observed archaeological data composed of T archaeo-
logical phases, each composed of a vector of occurrences of
cultural variants, compute the dissimilarity index between
each of the (T?> — T)/2 possible pairs. The resulting vector is
the observed summary statistic Sopserved.

(2) For each hypothesised model define a prior probability dis-
tribution of its parameters (e.g. UB: N ~ Uniform probability
distribution between 50 and 1000; u ~ Uniform probability
distribution between 5 x 10~ and 1072).

(3) Sample n values from each parameter's prior distribution.

(4) Execute the simulation and retrieve a vector of simulated
summary statistics Sy, Sy, ... Sp.

(5) Compute, for each of these, the Euclidean distances d1, 07, ...
On to Sopserved. This will give a measure of goodness-of-fit for
each simulation run.

(6) Select the proportion t(i.e. the “tolerance level”) of the
simulations with the smallest ¢ (i.e. the highest fit to the
observed data)

(7) Extrapolate the parameter values used to obtain the subset
defined in (6).
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Fig. 1. Variation in the relationship between cultural dissimilarity and distance in time for different parameter values of N (population), u (innovation rate), z (probability individual
engages in transmission process.), and b (bias parameter — positive values = anti-conformism, negative values = conformism). Average values (solid lines) and 95% confidence

(dashed line) obtained from 1000 simulations with 10,000 time-steps each.

The values obtained in the last step of this workflow provide a
probabilistic estimate of the model parameters and can be effec-
tively regarded as a posterior distribution that combines our prior
belief (defined in point 2) with the knowledge obtained from the
data (points 5—6).

3.2. Model comparison

The ABC framework offers a number of alternative algorithms
for guiding the selection of the best candidate model. Here we
present the most straightforward solution (but see Francois and
Laval, 2011 for more sophisticated techniques based on Deviance
Information Criterion), although recent studies suggest caution in
their interpretation (Robert et al., 2011)

The basic algorithm is an extension of the rejection method
described above. In our case, the simulation outputs of each of the
three competing models are simultaneously ranked on the basis of
their Euclidean distance to the observed summary statistic. We
then select a subset B of the best simulations, defined as the pro-
portion T of the simulation with the closest distance to the

empirical summary statistic (i.e. the smallest §). The proportion of
each candidate model within the subset B can provide a crude es-
timate of which model has the best fit. These estimates can then be
converted into Bayes factors (Jeffreys, 1961), a Bayesian version of
the likelihood ratio test that can provide numerical support for the
strength of evidence of one model over another.

4. Case study
4.1. Materials and contexts

Our case study examines changes in the frequency of armature
types from the Clairvaux and Chalain sites (Pétrequin, 1986,
1989,1997; Pétrequin and Bailly, 2004) in the Jura region of
southeast France. The dataset (see Electronic Supplement Table 1)
comprises a total of 280 arrowheads subdivided into nine chro-
nologically distinct phases (I: 3700—3600 B C; II: 3450 BC; III: 3200
IV: 3100 BC; V: 3050-3010 BC; VI: 3010—2930 BC; VI
2850—2750 BC; VIII: 2750—2600 BC; IX: 2600—1650 BC) defined by
Saintot (1998). For each phase, we counted the number of
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arrowheads assigned to twenty distinct types, each defined as a
unique combination of a binary presence-absence of morphological
traits based on a paradigmatic classification (see Electronic
Supplement Table 2) that excludes size and material. In this study
we chose to analyse the arrowheads at the aggregated type scale of
analysis instead of individual trait-level of analysis, for a closer
comparison with Saintot's original analysis. Future studies will
compare both analytical scales following Edinborough 2005, 2008.
Fig. 2 shows the empirically observed relationship between
Dymu(t1,t2) and A(tyt2), the latter obtained as a distance between the
median dates of each pair of phases. The scatter plot shows a clear
positive correlation, with an exponential curve (R? = 0.35) showing
a slightly better fit compared to a linear relationship (R*> = 0.32).
The overall pattern conforms to a general expectation of temporal
autocorrelation (cf. Fig. 1), albeit with high levels of variations in
Dyy for similar values of A.

The choice of the case study was dictated by two sets of reasons.
First, the comparatively small sample size is balanced by a robust
chronological framework collated from dendrochronologically- and
radiocarbon-dated sequences of superpositioned archaeological
units, extracted from the remarkably well-preserved Neolithic pile-
dwellings. This offers the rare opportunity to examine long-term
cultural changes in arrowhead technology in a chronologically
defined context. Second, in the original analysis conducted by
Saintot (1998), patterns of morphological variation were ascribed to
two episodes of broader regional cultural change, the first ¢.3200
BCE, marked by evidence of contact to the East and the second with
the appearance of Bell Beaker material at ¢.2500 BCE (Pétrequin,
1998; Saintot, 1998, 207). These episodes correspond to the tran-
sitions between phases Il and IV, and between phases VII-IX
respectively. It follows that if Saintot's hypothesis is supported by
the empirical data, we should expect these transitions to show
more marked change in the frequencies of different cultural vari-
ants compared to other periods. Thus measures of dissimilarity
such as the one described in equation [4] should exhibit higher
values during these transitions, but we need to take into account
differences in the duration of each phase and their temporal dis-
tances as well as the random nature of the copying mechanism,
which can generate an array of different values under the same
conditions (cf. Fig. 1). To integrate these elements in our re-
evaluation of Saintot's hypothesis, we propose a three-step work-
flow, which we apply to examine the second period of cultural

Q
-

Dum(t, to)

—— Exponential
---- Loess

I I I
500 1000 1500
Alty, t)

0.0

Fig. 2. Observed relationship between distance in time (A) and Morisita—Horn
dissimilarity (Dyy). The solid line shows the fit for an exponential model (R? = 0.35),
while the dashed line is a loess fit with the smoothing parameter « set to 0.75.

Table 1
Model parameters, symbols, and priors.
Symbol  Description Prior Relevant
models
N Number of agents/effective Uniform ~(50—1000) All
population size
u Rate of innovation Uniform ~(1074-10"2)  All
z Rate of cultural transmission  Uniform ~(0.03—0.1) All
b Frequency bias (b > 0: Uniform ~(—0.5—0; CB); AB & CB

anti-conformist; b < 0:
conformist)

Uniform ~(0—0.5; AB)

change, corresponding to the transitions VII-VIII and VIII-IX.° We
first estimate parameter values for the three different models of
cultural transmission introduced in Section 2, we then identify the
best model(s) given our data-set, and finally compare the empiri-
cally observed dissimilarities for these transitions against the ones
predicted by the best model (s).

4.2. Model implementation

We implemented our models by using an agent-based simula-
tion written in R statistical language (R Core Team, 2013).” We
explored three models: unbiased (UB), anti-conformist (AB), and
conformist (CB) transmission. Each variant of the simulation has
been conducted for 2050 time-steps, each corresponding to 1 year.
We assumed that social learning occurs with a fairly slow rate, once
or twice a generation (i.e. z between 1/30 and 1/10). This is broadly
in line with ethnographic evidence on the amount of learning time
required for specific techniques (cf. Roux et al., 1995 on bead
making) as well as on the skill development of bow-arrow skills
(Hill and Hurtado, 1996). We also assumed that successful instances
of transmission consist of a complete adoption of the all the
morphological traits of a given arrowhead, essentially equating the
unique combination of arrowhead components (the paradigmatic
type) to the basic unit of analysis. Partial variations in the compo-
nents were thus regarded as a form of innovation.

Prior estimates of the other three parameters were not dictated
by any particular assumption, and hence their probability distri-
butions can be regarded as uninformative priors (i.e. not subjec-
tively elicited), although boundary values were partly informed by
exploratory runs of the simulation. Table 1 shows the priors of the
parameters used in the hypothesised evolutionary models pro-
posed here.

At time-step 1, we generated N agents, all possessing different
integer values representing a cultural variant, in this case an
arrowhead type. During the subsequent time-steps, each agent: 1)
randomly adopted an existing trait in the population following one
of the equations described in Section 2; and 2) generated, with
probability u, a new cultural variant (i.e. a new arrowhead type), by
randomly drawing a new integer value. Table 1 summarises the
relevant parameters for each of the three variants explored here. To
avoid the idiosyncrasies derived from the initial conditions of the
model, we started each simulation run with 30,000 “warm-up”
iterations. Multiple experimental runs, using the combination of
parameter runs with the slowest rate of cultural evolution (i.e.
smallest mutation rate, highest population, and lowest trans-
mission rate) showed that equilibrium is reached before this
number (see Electronic Supplement Fig. 1)

6 We excluded the first period of major cultural change from our analysis given
the extremely small sample size during phases I (n = 2) and Il (n = 3).

7 Source code and sample scripts are available in the online electronic
supplement.
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At the end of 30,000 + 2050 time steps we:

1) Discarded the output of the first 30,000 time steps;

2) Generated nine sets aggregating the distribution of cultural
variants of the remaining 2050 time-steps following the
observed length of the archaeological phases at Clairvaux and
Chalain, discarding intervals where no archaeological phases
were present.

3) Randomly sampled n cultural variants from each set, with n
corresponding to the number of arrowheads recovered at each
phase.

4) Calculated the frequency of each cultural variant for each of the
nine sets/phases.

5) Computed the Morisita—Horn dissimilarity between all possible
pairs of sets/phases

Each simulation thus portrayed specific cultural transmission
processes as well as the archaeological uncertainties derived from
sampling and time averaging, allowing a more exhaustive genera-
tive model of the archaeological assemblage at the Clairvaux and
Chalain lake sites.

4.3. Tackling sample size issues

Although the ABC framework is capable of integrating different
sources of uncertainty in the posterior estimates of the parameters,
the small sample size of our dataset might lead to some problems in
the evaluation of the target summary statistics. Here we approach
the problem by: 1) excluding the first two phases (n; = 2; nj = 3)
from our analysis, and thus reducing the vector of target summary
statistics from 36 to the 21 Morisita—Horn dissimilarities observed
between the remaining seven assemblages (phases); and 2) using
bootstrap estimates, rather than single point values of the observed
summary statistics, for computing the distance between the
simulated and empirical observed dissimilarity measures.

We achieved the second point by conducting 1000 bootstrap
iterations for each phase by randomly sampling with replacement
count values of each armature type. As a result we obtained a total
of 21,000 Morisita—Horn dissimilarities. We then slightly modified
the basic ABC workflow described above, by comparing each
simulated vector of Morisita—Horn dissimilarities against different
empirical Morisita—Horn dissimilarities that we randomly extrac-
ted from the bootstrap distribution. This ensured that both the
parameter posterior and the model selection estimates incorporate
the uncertainty of the target summary statistic.®

4.4. Results

4.4.1. Parameter inference

We conducted 100,000 simulations for each of the three
hypothesised evolutionary models. Posterior distributions of each
model have been extrapolated setting t to 0.01, equivalent to the
1000 simulations (out of 100,000) with the closest Euclidean dis-
tance to the observed summary statistic.

Fig. 3 shows the marginal posterior distribution of the four pa-
rameters for each of the three hypothesised models, and Table 2
shows the 95% credible region of each. Innovation rates show two
distinct patterns, a strong peak at lower values (ca. 0.002—0.003)
for the unbiased and anti-conformist models, and a wider and
slightly bimodal posterior distribution for the conformist model.
This bimodal shape is a good example of the complex interplay

8 Analyses with the standard workflow show qualitatively similar results, albeit
with slightly narrower ranges in the posterior estimates.

between different parameters, with multiple combinations gener-
ating similar fit to the observed data (see online Electronic
Supplement Fig. 2—4). Posterior estimates of the population size
(N), show a convergence of all models towards low values
(50—100), albeit unbiased transmission exhibits a wider credible
region compared to the frequency biased models. The frequency of
transmission process (z) shows instead high levels of uncertainty,
although anti-conformist and unbiased models show some simi-
larity to each other with slight peaks towards higher values, whilst
conformist bias exhibits the opposite pattern. Both anti-conformist
and conformist models show a peak towards 0 in the frequency bias
parameter b, indicating that weak levels of frequency bias exhibit
the highest fit to the observed data. However, it is worth noting that
anti-conformist bias shows a wider credible region, (up to 0.4 for
the 50% region) indicating that some levels of anti-conformist bias
can also produce dissimilarities values similar to the observed ones.

4.4.2. Model selection

We compared our three models by computing an additional
100,000 runs for each using this time a parameter range derived
from the posteriors obtained from the analysis discussed above.
More specifically, we used uniform priors with the ranges defined
by the 50% credible regions shown in Table 2.

Table 3 shows the result of the model comparison based on the
standard rejection algorithm (with T = 0.01) and the Bayes factor
between all possible pairs. The results indicate that UB is the best
model with a share of 47.5% of the 3000 simulations with the
highest fit to the data. AB shows an equally high share of 43.9%,
whilst only 8.6% of the best-fit simulations were from the CB model.
One-to-one comparison based on Bayesian factors further confirm
these values, with high support (i.e. Bayes Factors >5, see Kass and
Raftery, 1995 for interpretations of Bayes Factors) of UB and AB over
CB, but no basis for choosing UB over AB (Bayes Factor = 1.08). In
other words we can safely state that a transmission process based
on conformism was highly unlikely, but the strong degree of
equifinality between unbiased and anti-conformist transmission
does not allow us to provide a single answer. However, it is worth
highlighting again that unbiased transmission can be regarded as a
special case of a frequency biased transmission with b = 0. In other
words, UB is a point hypothesis, and its range of expected summary
statistics, determined by the random nature of the copying process,
substantially overlaps with the expected range of values expected
from low frequency bias models.

Fig. 4 can illustrate this concept visually with a simulation. The
solid line represents the probability density of the Morisita—Horn
dissimilarity between two time-steps (t; = 30,000, t; = 30,500)
obtained from 1000 simulation runs with N =200, u = 0.001,b =0,
z = 0.05. The dashed lines show instead the probability density of
dissimilarities with three different values of b. The plot shows
different degrees of overlap between the UB model and variants of
the AB model as a function of b. When b = 0.01, the intrinsic vari-
ation in the simulation output (dictated by the random nature of
the copying process) is larger than the difference between an un-
biased and anti-conformist transmission process, making the two
virtually almost indistinguishable. When b = 0.5 the overlap is
considerable smaller, but still present, suggesting in this case some
degree of equifinality for dissimilarity values around 0.7.

The example illustrated in Fig. 4 prompts a more quantitative
evaluation of the degree of overlap and equifinality between the
proposed models. We achieved this by performing a leave-one-out
cross validation making use of the existing simulations. This con-
sists of iteratively selecting a random simulation output as a
dummy target data, and executing the same model selection al-
gorithm process adopted for the empirical data. The expectation is
that the model that generated the dummy target has the highest
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Fig. 3. Marginal posterior distributions of the model parameters: a) mutation rate; b) population size; c) rate of cultural transmission; d) conformist/anti-conformist bias.

probability (retrieved from number of simulations) assigned among
the target candidates. The result, known as a confusion matrix
(Hastie et al., 2009, Csilléry et al., 2012), should have non-zero
values only along the main diagonal in case of complete absence
of misclassification. High values on non-diagonal elements will be
the result of a large number of incorrect classifications, which in
turn suggests a high probability that two or more competing
models can generate similar pattern. In other words, the matrix
provides a quantitative measure of the equifinality between
competing models. Table 4 shows the confusion matrix of our three

Table 2
95% and 50% Bayesian credible region of the parameter posterior distribution.
uw N z b
UB 95% 11 x 1074 ~282 x 107* 52-970 0.031-0.099 NA
50% 27 x 1074~ 163 x 107 74—624 0.044—0.094 NA
AB 95% 1.2 x 107% ~ 255 x 10~% 51—929 0.031—0.099 0.0025—0.4912
50% 10 x 1074 ~ 148 x 10~% 60—434 0.039—0.095 0.0278—0.4282
CB 95% 19 x 107* ~ 490 x 10™* 50-924 0.030-0.099 —0.4676 — —0.0017
50% 59 x 107% ~ 429 x 10~* 62—572 0.034-0.093 —0.3064 — —0.0127
Table 3

ABC model selection: percentage of accepted simulations for
the three candidate models and pairwise matrix of Bayes

factors.
% Accepted sim. UB AB CB
UB 47.5% 1 1.08 5.49
AB 43.9% 0.92 1 5.08
CB 8.6% 0.18 0.19 1

candidate models, showing how the 100 randomly sampled sim-
ulations of each model (rows) have been attributed (columns). The
table confirms the presence of a strong degree of equifinality be-
tween UB and AB. This is however caused mostly by simulation
runs sampled from the unbiased transmission being more

Density

TITT
Sooo

o= O

D

Fig. 4. Probability density of Morisita—Horn dissimilarity between two time-steps
(t; = 30,000, t; = 30,500) obtained from 1000 with N, = 200, ¢ = 0.001, and
different values of b.
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Table 4

Confusion matrix with rows indicating the source of
100 randomly sampled simulations and columns their
attribution based on ABC.

UB AB CB
UB 37 57 6
AB 32 64 4
CB 10 18 72

frequently classified as anti-conformist bias (57 times out 100)
rather than UB itself (also 37 times out of 100). The other two
models show slightly more distinguishable patterns: AB and CB
were correctly classified 64% and 72% of the times respectively.

4.4.3. Hypothesis testing and outliers

We can now determine whether we could identify significant
outliers in the key transition phases at Chalain and Clairvaux, using
as our null the three best models identified by ABC. The rationale of
the approach proposed here is similar to the residual analysis of a
linear regression. Inference on the model parameters has been
based on the 21 empirically observed Morisita—Horn dissimilarities
between all possible phases between III and IX. This however does
not imply that the goodness of fit would be equal for each observed
inter-phase summary statistic, as some transitions might have been
characterised by a process distinct from the majority of the data.

Here we compare the observed Morisita—Horn dissimilarities
between phases VII to VIII, phases VIII to IX, and VII to IX that have
been interpreted as episodes of major cultural change linked with
the appearance of the Bell Beaker culture at Chalain/Clairvaux. If
this hypothesis is correct, we should expect these transitions to be
outliers, with dissimilarities higher than those expected from the
null model.

Fig. 5 shows the probability distribution of the Morisita—horn
dissimilarities expected from our two best models (obtained from
the 1% best simulations retrieved by the ABC workflow), and the
empirically observed values (shown as vertical dashed line with the
bootstrap distribution as a histogram). In all cases the empirical
estimates tend to be significantly smaller (one-sided p-
values<0.05), rather being larger, than the model expectations. This
allows us to conclude that, given our two null models, there is no
sufficient archaeological evidence supporting Saintot's hypothesis
of a more marked change in the distribution of armature attributes
with the appearance of the Bell Beaker culture. The results suggest
instead a significant slowdown in the rate of cultural change
compared to other phases examined at Chalain/Clairvaux.

Phases VII-VIII

—— Unbiased
—— Anti-conformist
<~

Phases VIII-IX

5. Discussion and conclusion

Inferring the evolutionary processes behind observed changes
in the frequency of different cultural variants is difficult because of
the comparatively poor quality of the archaeological data on the
one hand and the large number of plausible alternative mecha-
nisms of cultural transmission. The former limits the comparison
between expectations derived from specific evolutionary models
and the observed empirical data, while the latter introduces the
problem of equifinality and multifinality (Premo, 2010).

We presented a solution based on the methodological frame-
work of Approximate Bayesian Computation that can overcome
some of these issues. Its simulation-based approach offers a flexible
modelling environment where a variety of stochastic process can
be integrated. Here we explored fairly simple evolutionary models,
focussing part of our attention on issues pertaining to sample size
and time averaging. However, more complex models can be
explored within this framework, as long as the inferred generative
process can be formally described with a simulation model. For
example the assumption of the infinite allele model can be relaxed,
introducing a parameter defining the probability of innovating a
trait that has been already introduced in the past. This would better
portrait cultural traits that are easily prone to be re-invented due to
a limited design space.

One of the most appealing aspects of ABC is the possibility of
shifting from a hypothesis-testing to a multi-model selection
paradigm (Burnham and Anderson, 2002; see examples by Beheim
and Bell, 2011; Towner et al., 2012; Eve and Crema, 2014). This
enables the direct comparison of competing theories, offering the
opportunity to identify which model provides the best fit to the
data with the smallest number of assumptions. The multi-model
paradigm offers also an objective account of how alternative
models can actually generate similar patterns from different
generative processes (cf. Table 3), providing a new way to tackle the
problem of equifinality. We believe that these aspects make ABC an
extremely useful tool for archaeological inquiry.

The application of ABC, however, has some limitations, partly
intrinsic to its Bayesian foundations. Both the estimates of the
posteriors and the model-selection process are confined by the
boundaries defined by the user's assumptions (i.e. the priors or the
set of candidate models), and hence results will vary accordingly.
The two inferential exercises (parameter estimation and model
selection) are also strongly related to each other. A large uninfor-
mative prior might provide a robust exploratory tool for identifying
interesting regions within the parameter space of a single model,

Phases VI-IX

Density

Fig. 5. Expected Morisita—Horn dissimilarity for the UB (black solid line) and AB (red solid line) models, empirical observed values (dashed vertical line), and bootstrapped
probability estimates (grey bars) for phases VII to VIII, VIII to IX, and VII to IX at Clairvaux and Chalain lake sites. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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but the dispersion of simulation runs will make it “weaker” in the
comparative process. These fairly small drawbacks related to the
implementation of ABC can be best approached by a balanced
choice in the priors and candidate models informed by existing
archaeological knowledge. Future archaeological applications of
ABC might offer the necessary body of knowledge for facing these
issues.

Our case study has offered some interesting points in this re-
gard, and also in relation to previous works on neutral evolution
discussed at the beginning of the paper. For example, we believe
that summary statistics related to differences between assemblages
are more useful than measures based on patterns within single
assemblages. This enables us to assume a non-stationary model
where a complex interplay of different generative processes occurs
at different moments in time. We did not focus on identifying the
best model for individual transitions (as in Kandler and Shennan,
2013), but instead concentrated on identifying an overall fit. The
rationale in this case was to provide the highest number of sum-
mary statistics for the parameter inference to avoid equifinality
issues (which we can expect to be high in the case of a small
number of summary statistics and the choice of uninformative
priors) and identify changes in the evolutionary process by looking
at the model residuals (Section 4.4.3).

The high degree of equifinality identified by our study is partly
due to the nested nature of the proposed models and partly to our
conservative choice of using bootstrap estimates as target summary
statistics. Although this analytical framework has undoubtedly
increased the uncertainty in our output, we believe that integrating
this information in a quantitative fashion is pivotal in archaeolog-
ical research. This is not the first case of equifinality identified in
evolutionary models of cultural transmission. Mesoudi and O'Brien
(2008b) simulation-based study of Great Basin arrowheads indi-
cated that the correlation between artefact attributes observed in
their data could be explained by indirect bias as well as by neutral
evolution and conformist bias. Perhaps future work exploring and
possibly developing better statistics or a combination of targeted
summary statistics might partly overcome this issue.

We did not explore transmission processes where the intrinsic
properties of our cultural variants (e.g. performance of different
armatures in hunting activities) can bias the social learning process,
nor evolutionary dynamics related to individual learning. This
choice was dictated by the lack of information concerning such
properties in our dataset, and our, at least initial, preference for the
most parsimonious and general models.

The results of the case study indicated that we do not have
sufficient evidence for identifying a single best model describing
the change in the frequency of armature types. Both unbiased and
anti-conformist transmission models provide a good fit to the data,
although the posterior estimates of the latter show a relatively low
magnitude of this type of frequency bias. The results do not imply
that alternative forms of social learning did not take place at Cha-
lain and Clairvaux. Given the high degree of time-averaging, the
fairly large temporal distances between some phases, and the
relatively small sample size, detecting alternative modes of social
learning requires a strong and stationary signal through-out the
temporal scope of our analysis. Rapid changes between different
forms of cultural transmission might also explain the observed
pattern. This is also a cautionary tale for interpreting the rejection
of the hypothesis proposed by Saintot. We did not find empirical
evidence of higher dissimilarity during the appearance of the Bell
Beaker culture around c.2500 BCE, and instead found significant
support for a slowdown in the rate of cultural evolution, with the
maintenance of similar frequencies in different armatures types.
Our results are certainly valid only within the context of the best
models amongst the candidates proposed here, and alternative

models might well show a different outcome. Nonetheless, we
believe that our results are strong enough to suggest a reconsid-
eration of previous hypotheses on the armature assemblages at
Chalain and Clairvaux.

We believe our case study highlights both the limits and po-
tential of this methodological framework. More generally we hope
this work helps to foster the wider implementation and utility of
more formal models in archaeology and their evaluation against the
archaeological record.
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