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Abstract
The last decade saw a rapid increase in the number of studies where time–frequency 
changes of radiocarbon dates have been used as a proxy for inferring past popu-
lation dynamics. Although its universal and straightforward premise is appealing 
and undoubtedly offers some unique opportunities for research on long-term com-
parative demography, practical applications are far from trivial and riddled with 
issues pertaining to the very nature of the proxy under examination. Here I review 
the most common criticisms concerning the nature of radiocarbon time–frequency 
data as a demographic proxy, focusing on key statistical and inferential challenges. I 
then examine and compare recent methodological advances in the field by grouping 
them into three approaches: reconstructive, null-hypothesis significance testing, and 
model fitting. I will then conclude with some general recommendations for applying 
these techniques in archaeological and paleo-demographic research.

Keywords Prehistoric demography · Dates as data · Statistical inference · 
Radiocarbon dates

Introduction

Population time series have a narrative appeal that has long been the envy of many 
archaeologists. Sister disciplines, such as economy and ecology, have developed 
methods, theories, and models that link individual-level processes to these macro-
scale patterns and have inspired generations of archaeologists to find ways to bor-
row and extend these concepts to the study of the human past. The opportunity to 
generate something that visually resembles population time series is a source of 
major temptation—all those ideas and concepts can finally be applied to understand 
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the archaeological record. Thus, it comes as no surprise that the so-called dates as 
data (hereafter DAD) approach (Rick, 1987), which relies on the assumption that 
the changing frequency of radiocarbon dates related to anthropic events is a reliable 
proxy of relative past population change, is a low-hanging fruit that has been har-
vested extensively in the last decade.

Inferring population trajectories from time–frequency data is hardly a novel con-
cept and certainly not limited to radiocarbon dates. Archaeologists have long been 
and are still counting different things as a proxy of population size, ranging from 
classic examples such as sites, dwellings, or artefacts (Drennan et al., 2015 for a 
review) to less common applications like faecal stanols (White et al., 2018). What 
makes DAD different, and in many cases controversial, is the unspecified nature of 
the thing that is being counted. Sites, dwellings, potsherds, and faecal stanols repre-
sent unique categories of artefacts that can be more or less directly related to specific 
behavioural processes. On its own, radiocarbon dates are just numerical attributes 
of virtually anything carbon-based and relate to a highly diverse range of anthropic 
and non-anthropic processes. Population inference based on radiocarbon dates does 
not necessarily have to subscribe to the DAD assumption, and time frequencies can 
relate to specific types of events (e.g. use of residential features, cf. Oh et al., 2017). 
More broadly, radiocarbon frequency data have also been used to examine cultural 
phenomena such as changes in burial or subsistence practices (e.g. Stevens & Fuller, 
2012; Gleeson and McLaughlin, 2021), and hence their analyses are not restricted to 
the reconstruction of past population dynamics either. These examples, where events 
associated with the radiocarbon record are well defined, should not be referred to as 
DAD. The main appeal and the primary issue with Rick’s approach stem from the 
tactical decision of prioritising larger sample sizes at the cost of being vaguer on the 
nature of the dates to be included in the analysis.

There is, however, a separate and additional layer of complexity, issues, and chal-
lenges dictated by the statistical nature of the method proposed. Some of these are 
not specifically limited to radiocarbon dates and are relevant to other attempts in 
inferring population changes from archaeological frequency data (see Brown, 2015 
for discussion), namely, the (1) non-random and systematic nature of chronological 
uncertainty; (2) the problem of sampling error; and (3) and the substantially wide 
range of possible population curves that we are aiming to reconstruct. The inter-
section of these three broader issues makes any frequency analyses of radiocarbon 
dates challenging, even when issues about the nature of the proxy or the definition 
of the events associated with each date are addressed. More importantly, there are 
no readily available, off-the-shelf solutions to many of these analytical problems. 
Consequently, the last few years saw the proposal of a substantial wide range of new 
statistical approaches developed in prehistoric population studies.

This paper aims to review and compare the current range of statistical methods 
designed to analyse time frequencies of radiocarbon dates. Over the last few years, 
several review papers have examined different aspects of radiocarbon based popula-
tion inference, including the problematic nature of the proxy (Attenbrow & Hiscock, 
2015); the misleading effects of the calibration process (Weninger et al., 2015; Wil-
liams, 2012); the importance of growth rates (Brown, 2017) as well as their com-
parability to ethnographic scales (Tallavaara and Jørgensen, 2021); and the critical 
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issue of radiocarbon sampling processing (Becerra-Valdivia et al., 2020). A system-
atic review of more recent methodological solutions does not exist, as most discus-
sions on the statistical nature of the problem are either limited to small sections of 
papers arguing in favour of particular solutions (see, e.g., Brown, 2015; Crema et 
al., 2017; Bronk Ramsay 2017; Timpson et al., 2021; Carleton, 2021) or broader 
criticisms of particular methodology such as the summed probability distribution of 
calibrated radiocarbon dates (hereafter SPD, Carleton and Groucutt, 2021). The sub-
stantially wide range of statistical options available and the idiosyncrasies of contex-
tual issues have made the whole research area harder to navigate. As a result, unwar-
ranted criticisms are often raised without a clear understanding of what a particular 
method entails, while simultaneously, there is an increased risk of misuses, abuses, 
and misinterpretations of these novel solutions. The objective of this paper is also to 
focus the spotlight on neglected key details that are often hidden behind equations 
or lines of code or implicit in the description of particular techniques. In most cases, 
these details have no impact in qualitative terms, but there are circumstances where 
conclusions can be drastically different.

From Dates as Data to Summed Probability Distributions

Rick’s seminal paper first introduced the core assumption that “[a]ll things equal, 
more occupation produced more carbon dates” (Rick, 1987, 56), immediately 
acknowledging in the following sentence that such an equation will be affected by a 
variety of intervening factors, most notably creation, preservation, and investigation 
biases (Fig. 1 in ibid). The original approach simply consisted in creating histograms 
of uncalibrated 14C ages. Still, it was already coupled with more advanced tech-
niques, such as bootstrap confidence intervals to consider potential spurious effects 
emerging from sampling error (Fig. 4 in ibid.). The approach had some discrete suc-
cess already in the early 1990s when several authors have switched from histograms 
of uncalibrated 14C ages to curves generated using calibrated dates (e.g. Ames, 1991; 
Dye & Komori, 1992; Erlandson et al., 1992; Chatters, 1995). Some of these early 
applications have also led to the development of new statistical techniques, such as 
randomisation tests1 (Dye, 1995), or even attempts to combine historical census data 
and inferred growth rates to retrodict absolute (rather than relative) population sizes 
for the pre-census era (Dye & Komori, 1992). The transition from the summation of 
uncalibrated to calibrated 14C ages became problematic once the calibration process 
no longer made it possible to describe calibrated dates using symmetric errors. In 
response to an early work by Housley et al., 1997), who summed uncalibrated dates 
using Gaussian distributions and a moving sum, Blockley et al., 2000) stressed that 
uncalibrated dates would provide unreliable results as they are based on a different, 

1 While preparing this manuscript, I came across a paper by Tom Dye. He was the first to introduce 
randomisation tests to compare curves generated from the summation of calibrated radiocarbon dates. In 
2016, I have, together with my colleagues, effectively reinvented the wheel by introducing a similar tech-
nique to compare regional demographics in prehistoric Japan (Crema et al., 2016a, 2016b).
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non-linear timescale. They then argued that “[o]nce dates have been calibrated they 
can no longer be expressed as a point date with a Gaussian error because the prob-
ability distribution of the date is a function of the shape of the calibration curve 
[…] Because of this, a moving sum which gives no weight to the actual probability 
distributions of dates is unlikely to be a good assessment of their true distribution. It 
is more appropriate to look at the summed probability distributions of the calibrated 
dates […]” (emphasis added). As far as I am aware, this was one of the earliest 
applications of what is now undoubtedly the most common form of radiocarbon fre-
quency analyses, often now simply referred to as SPD.

The first significant criticisms against SPDs were raised a few years later by 
Blackwell & Buck (2003) in the context of reviewing previous works on the Late 
Glacial human occupation in north-western Europe (including both Housley et al., 
1997 and Blockley et al., 2000) and advocating for a model-based Bayesian solution 
as a more robust alternative. Their review stress two core issues: (1) the problem-
atic nature of summing probabilities and (2) the fact that “since the calibrated dates 
being ‘summed’ do not relate to the same event, it is not clear what interpretation 
can be placed on the probabilities produced by this method” (ibid, page 233). While 
Blackwell and Buck do not provide much detail for the first problem, it is reasonable 
to assume that this relates to the mathematical issue of how summed probabilities 
are no longer probabilities, and while representing in some way the density distri-
bution of the phenomena of interest, they cannot be straightforwardly interpreted 
(see Carleton and Groucutt, 2021 for a recent exhaustive review on this issue) as 
they mask the uncertainties inherited from individual dates. For example, consider 
a scenario where two time intervals, t1 and t2, are both associated with a summed 
probability of 10. Now suppose that t1 contains ten radiocarbon dates, each with a 
probability of 1, while t2  has 100 radiocarbon dates, each with a probability of 0.1 
for that interval. In other words, we are sure that ten events are associated with t1, 
while we have much more uncertainty for t2. Summed probability cannot distinguish 
the two and simply conveys a message that there was no change in the number of 
events from t1 and t2 without providing a measure of uncertainty on such a claim. In 
this particular case, the probability that t2 has exactly ten events is only 0.13, with a 
probability of increase from t1 to t2 equal to 0.41 and a probability of decrease equal 
to 0.45.2

The second issue raised by Blackwell and Buck concerns the core assumption 
of dates as data,i.e. what is being counted are simply dates, and the events they are 
associated with are ambiguously defined (e.g. “anthropic”), encompassing a wide 
range of behavioural processes. Rick’s gambit hinges on the assumption that the 
aggregate frequency of radiocarbon dates associated with different anthropic events 
correlates with population density, retaining a reliable signal by evening out its 
underlying heterogeneity. A relatively large number of papers have discussed how 
this assumption can be problematic (Attenbrow & Hiscock, 2015; Becerra-Valdivia 
et al., 2020; Torfing, 2015; Ward & Larcombe, 2021). While this is unquestion-
ably an important issue, I will not add much more to the debate for two reasons. 
Firstly, the problem is context-dependent—demonstrating that the assumption that 

2 These probabilities can be computed using the binomial probability mass function.
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does or does not hold for a particular dataset does not allow its conclusion to be 
generalised to all DAD applications. Secondly, the problem arises prominently if 
events associated with the sample dates are not clearly identified. In other words, 
if one decides to limit their dataset to radiocarbon dates associated with particular 
types of events (e.g. the constructions of dwellings), much of the issue is reduced 
to the extent by which the correlation between the frequency of such events, and the 
population under investigation is stationary over time (and space). Of course, this 
does not necessarily solve all interpretative problems. Still, it is worth noting that 
time–frequency analyses of radiocarbon dates represent a wider class of analyses, 
models, and issues than DAD.

The Curse of Eyeballing

The issues discussed in the previous section are just a fraction of a wider range of 
problems associated with the direct interpretation of SPDs discussed in the liter-
ature. While readers concerned with these problems should consult more detailed 
discussions for each, it is worth briefly revisiting some of the key matters raised, 
namely (1) sampling error; (2) heterogeneity in sampling intensity; (3) spatial aver-
aging and nonstationarity; (4) taphonomic loss; and (5) systematic measurement 
errors associated with the calibration process.

Sampling Error

A trivial (but somewhat surprisingly too often disregarded) aspect of time frequen-
cies of radiocarbon dates (or any other count-based population proxy) is the notion 
that the observed data are just samples and not the statistical population. A simple 
way to conceptualise this is to consider the observed sample of dates as random 
draws from a probability distribution spanning the time window of interest and char-
acterised by an unknown shape that we aim to recover. This effectively formalises 
the assumption of any frequency-based proxy—we expect to find more “things” 
(e.g. sites, artefacts, radiocarbon dates) during intervals where there are more peo-
ple; if we have twice as many people for a given time interval, we should expect 
twice as many “things” we are counting. In practice, however, this relationship is 
conditioned by the available number of dates, and observed data can deviate from 
this expectation. In other words, even if there is a perfect correlation between human 
population size and the frequency of radiocarbon dates, there will always be some 
deviations arising from sampling error, and observed peaks and troughs might not 
be a genuine signal of population change. As mentioned earlier, the problem was 
already raised in Rick’s original work and has since then been tackled in a variety 
of ways (e.g. Michczyńska & Pazdur, 2004; Kelly et al., 2013; Shennan et al., 2013; 
Manning & Timpson, 2014; Brown, 2015; Dye, 2016; Bronk Ramsey, 2017). Larger 
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sample sizes can, of course, minimise the problem of sampling error, and as such, 
it is tempting to think whether there is a threshold above which the problem can 
be safely ignored. A widely cited work by Williams (2012) has, for example, pro-
vided a guideline figure of 500 dates, following previous simulation-based analyses 
by Michczyńska & Pazdur (2004) and by Geyh (1980). While a clear answer to the 
question “how many dates do I need for my SPD?” might sound reassuring, the real-
ity is that this ultimately depends on the scale, the granularity, and the magnitude of 
the specific fluctuations we wish to identify (see Hinz, 2020 for a simulation-based 
study on this problem). To a large extent, this is akin to the issue of statistical power 
in null significance hypothesis testing (NSHT); sample size is only one side of the 
coin, and its required value depends on the effect size we wish to determine. Large 
trends can be detected from smaller sample sizes while identifying smaller fluctua-
tions requires more data. The problem is exacerbated by the fact that we have much 
less clue about the shape of the target population compared to other kinds of data. 
For example, if we were to examine a small sample of femur lengths from a particu-
lar cemetery assemblage, we would expect, a priori, a normal distribution following 
the central limit theorem—if we plot a histogram and observe a small deviation from 
a bell curve, we would be inclined to dismiss this as the result of sampling error. The 
frequency distribution of radiocarbon dates has fewer and much less formalised gen-
eral principles that can help us be sceptical about the peaks and troughs we observe. 
Aside from extreme fluctuations, we would regard many of the patterns we observe 
as plausible evidence of population change. In other words, we do not have a strong 
prior on the expected shape of the SPD, and having an epistemic stance prone to 
over-interpretation does not help.

Heterogeneity in Sampling Intensity

Adopting formal statistical inference (see next section) can address the problem of 
sampling error. However, this is ensured only if the two fundamental assumptions 
of statistical samples—randomness and independence—are met. Radiocarbon dates 
are clearly not randomly sampled from a population of possible dateable artefacts. 
In most cases (but see Porčić et al., 2021 for an exception), samples for demographic 
inference are based on the re-use of 14C dates collected for a wide range of pur-
poses using various sampling strategies. The question is whether, with a sufficiently 
diverse set of sampling strategies and designs underlying a given dataset, we can 
treat the sample as if it were random. The answer is, once again, context-depend-
ent, but there are a few typical cases where such an assumption does not hold. The 
most notable one is that the likelihood of employing radiocarbon dating declines 
when investigating historical periods where more accurate, precise, and cheaper dat-
ing methods become available. It follows that all radiocarbon-based time–frequency 
data suffer from an edge effect approaching the present day, with a magnitude and 
timing that vary geographically and limit opportunities for cross-regional studies for 
more recent periods.

Systematic temporal variations in sampling intensity are harder to detect when 
they are likely to produce biases that do not contradict our expectations as bluntly 
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as the case of the declining density towards the present day. For example, one could 
postulate that an increased interest in dating more accurately the earliest evidence of 
Neolithisation might promote a higher sampling intensity and consequently lead to 
a higher density of radiocarbon dates during the early stages of the Neolithic period. 
The problem here is that we also expect an increase in the population size during 
this period, and as such, we would hardly interpret a higher density of radiocar-
bon dates during this interval as an anomaly or the consequence of a research bias. 
Heterogeneous sampling intensity across time is perhaps the most concerning and 
simultaneously less understood bias that might affect the DAD approach. One pos-
sible way to mitigate its impact is to include statistical variables aimed to control 
the potential impact of the original purpose of dating, e.g. by discerning dates from 
specific research projects to those obtained in rescue excavations. While no attempts 
have been made in this direction yet, statistical analyses of different recovery prac-
tices do show specific signatures (Vander Linden, 2019) and might provide a base-
line for accounting for these kinds of biases.

The mixture of different objectives and dating practices is particularly evi-
dent when examining inter-site variations in sampling intensity. For example, 
in the EUROEVOL database (Manning & Timpson, 2014), the largest number 
of dates associated with an individual site is 184, while more than half of the 
sites (2,138 out of 4,213) contained only a single date. Several solutions have 
been proposed to tackle this problem. For example, dates that are known to 
be referring to the exact same event can be combined following Ward & Wil-
son’s method (1978; see, e.g. Ahn & Hwang, 2015). A similar procedure often 
referred to as “binning” (see Timpson et al., 2014), consists of generating a 
“local” SPD by summing the calibrated probability of dates from the same site 
that are “close” in time and normalising to sum to unity the area of the result-
ing curve. In both cases, the net result is to treat sets of multiple dates as one 
and effectively compensate for the unevenness in sampling intensity. There are, 
however, different implications between the two approaches. In the first case, 
the aggregation process does not alter the nature of what is being counted as it 
relies on the notion that sets of dates refer to the same event. Thus, for exam-
ple, if dates are aggregated based on the construction of residential units (our 
target event), the resulting frequency data would still be a proxy of changes in 
the number of dwellings over time. The situation is slightly different in the case 
of the “binning” approach. Here the aggregation “ensures that each site-phase 
is equally weighted when generating the SPD” (Timpson et al., 2021, empha-
sis added), which implies that effectively we are defining the target as loosely 
defined “site occupation” counts. The problem becomes even more complex as 
the “binning” approach requires some temporal threshold for aggregating dates 
that are “close” in time. Modifying such a threshold could yield rather different 
results, and while one can carry out sensitivity analyses, the nature of what is 
being counted remains hostage to the value assigned to such parameter. Shifting 
the interpretation of the temporal frequencies of radiocarbon dates from “popu-
lation size” to “number of occupied settlements” can help, but at the same time, 
this introduces interpretative consequences. Empirical estimates of growth rates 
obtained can no longer be assumed to be directly emerging from demographic 
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events (i.e., birth, death, and migration) alone but rather as a joint outcome of 
these processes with episodes of settlement fission, fusion, and extinction. Shifts 
between nucleated and dispersed settlement patterns, changes in the duration of 
settlement occupation, or variations in intra- and interannual residential mobility 
patterns are just some examples of processes that can lead to signals without an 
actual change in the underlying human population (cf Bevan & Crema, 2021). 
This is a problem of interpretation, and while it does not on its own jeopardise 
the DAD approach, it further emphasises the issues of comparability between 
growth rates estimated from archaeological data to those observed in ethno-
graphic and historical contexts (see Tallavaara & Jørgensen, 2021) or even how 
differences between different archaeological population proxies should be inter-
preted (see Palmisano et al., 2017; Crema & Kobayashi, 2020; Seidensticker et 
al., 2021).

Spatial Averaging and Nonstationarity

The ubiquity of radiocarbon data and the increasing availability of larger databases 
(e.g. Manning et al., 2016; Chaput & Gajewski, 2016; Lucarini et al., 2020; Mar-
tínez-Grau et al., 2021; Bird et al., 2022) has pushed many to attempt reconstructing 
prehistoric population dynamics for larger windows of analyses, often at continental 
scales (Shennan et al., 2013; Wang et al., 2014; Williams, 2012).

Summarising putative population dynamics of a vast geographic area with a sin-
gle time series can undoubtedly be misleading, as it implicitly assumes that all sub-
regions had similar demographic trajectories. The trade-off is between selecting a 
smaller window of analyses that accounts for spatial variation but is impacted by 
higher sampling error or opting for a wider region that benefits from a larger sample 
size but yields a “space-averaged” estimate (Porčić et al., 2021) that might not be 
representative of any of its subregions. The problem is further exacerbated by the 
fact that larger study areas are likely to be characterised by variations in sampling 
strategies and intensity, as different administrative and geopolitical units are often 
associated with substantial variation in wealth, sample design, and research interests 
(Crema, 2020).

The use of spatial analyses that explicitly explores regional variation in demo-
graphic trajectories (Timpson et al., 2014; Chaput et al., 2015; Crema et al., 2017; 
Riris & Arroyo-Kalin, 2019) can offer far more informative insights for larger 
regions than a single timer-series. However, as for frequency time-series, these 
spatiotemporal density maps cannot be based exclusively on visual assessment and 
needs explicitly account for variations in sampling intensity (e.g. using relative risk 
surfaces; see Chaput et al., 2015; Bevan et al., 2017) as well as the delicate balance 
between spatial resolution and sampling error (e.g. by using spatial permutation 
tests Crema et al., 2017; Riris & Arroyo-Kalin, 2019).
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Taphonomic Loss

Taphonomic loss, and other post-depositional processes, are another key factor that 
can bias the raw and direct interpretation of the radiocarbon record and other types 
of time–frequency data. As for many of the other biases discussed above, the issue 
was already raised in Rick’s seminal paper, which, amongst other things, highlights 
the implication of older dates being less likely to survive and included in the sample. 
A model-based assessment of the potential magnitude of taphonomic loss has been 
explored by Surovell and Brantingham (2007), who showed how under extreme con-
ditions, an exponentially declining population could even yield an exponential grow-
ing frequency curve. Adjusting frequency data for taphonomic loss is straightforward 
but requires a loss function derived from independent estimates. Surovell and col-
leagues have (Surovell et al., 2009, see also Bluhm & Surovell, 2019 for an updated 
version) used radiocarbon ages from volcanic deposits to empirically estimate the 
impact of taphonomic loss. Their analyses revealed that the rate of taphonomic loss 
is not constant, but declines as the age of the site grow and propose a global “correc-
tion formula” that accounts for this factor for time–frequency data between 40,000 
and 1,000 cal BP. The implication of this correction can vary between datasets and 
is generally expected to have a greater impact when dealing with multimillennial 
scales. Still, several studies have also reported negligible effects (see for example 
Zahid et al., 2016; Tremayne & Winterhalder, 2017; Broughton & Weitzel, 2018; 
Fernández-López de Pablo et al., 2019).

Calibration Effects

The uncertainty associated with radiocarbon dates is a combination of sample-spe-
cific measurement errors and the systematic effect of the information loss resulting 
from the calibration process. The random nature of the former makes it a compara-
tively negligible factor for most objectives, with limitations primarily concerning 
the analytical resolution. With a sufficiently large sample size, the impact of these 
errors can, in most cases, be considered negligible. The systematic nature of the lat-
ter is far more problematic as it can lead to artificial patterns in the time–frequency 
data—with all other things being equal, 14C dates within calibration “plateaus” will 
tend to produce wider and flat calibrated probability distributions. In contrast, sam-
ples located within steeper portions of the curve will tend to have narrower and more 
“spiky” distributions (but see Brown, 2015). In this case, increasing the sample size 
does not help—the sum of flat probability distributions with similar ranges will, 
unsurprisingly, be a flat probability distribution. The cumulative consequence of this 
effect is that some of the fluctuations observed in empirical SPDs are just the results 
of these calibration effects. This is a well-known problem that has been pointed out 
repeatedly in the literature (Guilderson et al., 2005; Williams, 2012; Brown, 2015; 
Weninger et al., 2015; Crema & Bevan, 2021).

It is worth noting that the problem is not unique to radiocarbon dates and applies 
to any dating method where events closer in time have similar systematic information 
loss. Perhaps the most common example is the use of archaeological periodisations 



 E. R. Crema 

1 3

and relative chronologies, and its implications become tangible when attempts are 
made to quantify their uncertainty and convert assignments to particular periods 
or phases into absolute calendar dates. Several approaches have been proposed in 
the literature, starting from the application of aoristic analysis (Crema, 2012; John-
son, 2004) to the use of more complex probability models (Baxter & Cool, 2016; 
Collins-Elliott, 2019; Crema & Kobayashi, 2020) to convert a given “time-span” of 
the possible existence of an event into a probability distribution. The issue, in this 
case, is that the extent of such temporal intervals is in practice informed by the pres-
ence of some diagnostic features which allow the specialist to assign a particular 
object into a phase (e.g. “Early Bronze Age I”). Thus, two events that are separated 
in time, but have similar diagnostic features, will be assigned to the same “time span 
of existence” and ultimately have identical probability distributions. It follows that 
summing these probabilities (e.g., using “aoristic sums”) will yield time-series with 
spurious artefacts similar to those observed in SPDs (see Bevan & Crema, 2021 for 
discussion).

Calibration effects have been tackled mainly by applying some smoothing tech-
niques to remove indiscriminately any short-term fluctuations in the SPDs. These 
can be as simple as calculating the average summed probability over a sliding win-
dow (e.g. Shennan et al., 2013; Kelly et al., 2013) or more complex solutions involv-
ing the joint use of Monte-Carlo simulations and Kernel Density Estimates (e.g., 
Brown, 2017). These and other solutions (e.g. Weninger et al., 2015) can help deter 
over-interpretations of radiocarbon frequency data, particularly for shorter tempo-
ral scales (< 500 years) where the impact of these systematic errors is particularly 
pronounced. However, it is worth noting that many of these methods are effectively 
designed to “mask” the effect of calibration for visualisation purposes and do not 
address the problem directly and systematically.

Statistical Inference

The brief survey of potential biases affecting radiocarbon time–frequency is a 
reminder of how visual inspections of SPDs should be carried out with extreme cau-
tion. Any insights obtained from visual assessments should be appropriately exam-
ined to formally discern whether they pertain to processes of interest or are mere 
statistical artefacts. While this principle generally applies to data visualisations, 
the lurking temptation of making post-hoc narratives from SPD plots appears to be 
particularly common despite continuous reminders and warnings in the literature to 
consider potential confounding factors.

The confidence that SPDs can be read as a direct signal of fluctuations in radio-
carbon density (and conversely in population density) has led many to take a fur-
ther step and carry out statistical analyses directly using the temporal sequence 
of summed probability values in SPDs. Examples range from simple correlations 
between SPD curves and other time series such as paleoenvironmental data (Palm-
isano et al., 2021) or other population proxies (Crema, 2020) to more sophisti-
cated analyses, including the use of Granger causality analyses to explore lagged 
responses to climatic events (Kelly et al., 2013), attempts to identify early warning 
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signals of collapse (Downey et al., 2016), or use of ecological population models 
(Freeman et al., 2021) with externally induced, time-varying carrying capacities 
(Lima et al., 2020). The level of sophistication achieved by some of these studies 
is often very high and undoubtedly offers a glimpse of the kind of exciting ques-
tions that we could answer. Yet, fundamental concerns regarding sampling error or 
calibration effects are often ignored or just mildly acknowledged without a formal 
exploration of what their impact would be.

The extent to which inferences based on direct statistical assessments of SPDs are 
biased will inevitably depend on the specific context, but the general expectation is 
that this is a function of sample size, absolute time-interval, and the temporal granu-
larity of the process under investigation. When sample sizes and the chronological 
granularity of the analyses are sufficiently large, the impact of sampling and calibra-
tion is likely negligible compared to the signal we aim to detect. However, there is 
no simple way to determine when this is the case. How many radiocarbon dates do 
we need to stop being concerned about sampling error? What is the appropriate tem-
poral scale of analyses so that the impact of calibration can be safely ignored? As it 
is always in these cases, the answer is an unworkable and unsatisfying “it depends”. 
As noted by Price et al. (2021), even with an infinitely large number of radiocar-
bon dates, an SPD would not be able to recover the shape of the underlying popula-
tion as a result of the summation of the probabilities and the systematic impact of 
calibration.

There are situations where ignoring these issues can lead to strikingly different 
outcomes. For example, Lima et al. (2020) have recently constructed an SPD for the 
Pacific Island of Rapa Nui and fitted different logistic growth models. They utilised 
information criteria to demonstrate that the highest support was found in a model 
where the carrying capacity was a function of environmental covariates, which they 
used as an argument in support of the so-called ecocide hypothesis. A follow-up 
study by Di Napoli et al. (2021) employing approximate Bayesian computation (see 
below for details), which accounts for sampling error and calibration effects, has 
shown no support for such a model and instead indicated that, with the available evi-
dence at hand, there was no way to discern between the competing models.

However, the direct use of SPD values for statistical analyses does not represent 
the entirety of inferential approaches dedicated to population studies based on time 
frequencies of radiocarbon dates. In less than a decade, a significant number of novel 
methods that account for many of the issues discussed in the previous section have 
been proposed in the archaeological literature. They all share a fundamental dissat-
isfaction with approaches based on the direct interpretation of SPDs and offer solu-
tions tailored to specific inferential needs (see below and Table 1 for a summary). 
Despite some fundamental differences, these techniques can be broadly classified 
into three groups based on their primary objective: (1) reconstructive approaches, 
(2) null-hypothesis significance testing (NHST) approaches, and (3) model-fitting 
approaches. As for any attempts in imposing sharp categorical boundaries, one 
should be critically aware that many of the methods presented below do share con-
ceptual roots, and a combination of techniques from different approaches can well 
coexist in the same study.
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Reconstructive Approaches

The section above has repeatedly highlighted that a visual inspection of SPDs is not 
warranted and may lead to biased interpretations in some situations. Yet data visu-
alisations can be a powerful tool to highlight information that cannot be sufficiently 
portrayed by numbers alone (Anscombe, 1973). Thus, it does not come as a surprise 
that many have attempted to tackle this difficult trade-off by implementing a visu-
alisation technique that can simultaneously correct for the impact of the calibration 
process while acknowledging the potential impact of sampling error by displaying 
an envelope surrounding observed SPD values.

A few different approaches have been proposed to achieve this objective (see 
Table 1 and Fig.  1), with the earliest application dating back to the already men-
tioned bootstrap confidence interval employed by Rick (1987). Since then, other 
authors have taken a similar approach (e.g. Timpson et al., 2014), sometimes in 
conjunction with more sophisticated procedures. For example, McLaughlin (2019) 
advocates a solution based on a combination of bootstrapping and kernel density 
estimates. Given a collection of radiocarbon dates, the approach consists of (1) 
randomly selecting (with replacement) a subset of the sample; (2) calibrating the 
sampled dates; (3) sampling a calendar date from each calibrated probability dis-
tribution, and (4) running a univariate kernel density estimate (KDE). The process 
is repeated multiple times so that an ensemble of KDEs is obtained, combined, 
and visualised as an envelope (Fig. 1, first row; see also Brown, 2017 for a similar 
approach but without the bootstrapping step). Such bootstrapped composite KDE 
(cKDE) addresses the issue of sampling error (step 1), chronological uncertainty 
(step 3), and the problem of calibration artefacts (KDE smoothing in step 4). The 
choice of bandwidth size and the shape of the kernel can have a significant impact 
on the final product, with the resulting curve being either under or over-smoothed. 
McLaughlin suggests a comparatively small bandwidth (e.g. 30  years) for most 
applications to capture sudden changes in density, but it is an open question whether 
this size can avoid all instances of artificial calibration peaks often observed in 
SPDs. While there are a relatively large number of algorithms designed to find opti-
mal bandwidth sizes based on the observed data (Heidenreich et al., 2013), there is 
no clear consensus on which one should be preferred, nor a systematic exploration 
of which methods are better suited for demographic inference. Finally, KDEs are 
typically affected by an edge effect, with a decline in density at the start and the end 
of the window of analysis. Edge correction formulas do exist, but their application 
becomes problematic given the nature of the resampled data, and the most straight-
forward approach seems to be the selection of a wider data window and a narrower 
visualisation window.

The problem of bandwidth size selection can be solved by treating this as a 
parameter to be estimated using Bayesian inference. This solution was developed 
by Bronk Ramsey, 2017) and is implemented in the widely used calibration and 
Bayesian analyses software OxCal (see Fig. 1: second row). The approach consists 
of using a uniform prior for the bandwidth size h with an upper limit based on Sil-
verman’s rule (1986), which provides a criterion for identifying h when the underly-
ing distribution is Gaussian. Bronk-Ramsey considers this as an upper threshold that 
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would over-smooth multimodal distributions. The predictive likelihood used to esti-
mate h is instead based on the product of likelihoods of each date as modelled by the 
KDE based on the remaining data, excluding the focal date. The model can be fitted 
alongside other distribution models in OxCal (e.g. uniform, Gaussian, exponential, 
etc.) that will act as a prior and can modify the shape of the kernel for each date. 
Alternatively, an extension of this approach (called KDE_Model in OxCal) can be 
adopted where the prior for each observation point is effectively the KDE distribu-
tion of all the other radiocarbon dates.

While the KDE approach proposed by Bronk-Ramsey has both elements of fre-
quentist and Bayesian inference, a full non-parametric Bayesian approach is also 
possible via the finite Gaussian mixture model (Fig.  1: third row). This is a flex-
ible method that is now widely used in many fields (see, e.g. in isotopic studies 
Fernandes et al., 2014) and the Bchron (Haslett & Parnell, 2008) and the baydem 

Fig. 1  Comparison of reconstructive approaches to radiocarbon frequency data on small (n = 10), 
medium (n = 100), and large (n = 1000) datasets using bootstrapped Composite Kernel Density Estimate, 
OxCal’s Model_KDE and baydem’s finite Gaussian Mixture model. The grey area represents the shape 
of the underlying probability (identical for the three sets) from which radiocarbon dates were sampled 
from. R scripts required for generating the figures are available at https:// github. com/ ercre ma/ c14de 
morev iew and archived on zenodo (https:// doi. org/ 10. 5281/ zenodo. 64213 45)

https://github.com/ercrema/c14demoreview
https://github.com/ercrema/c14demoreview
https://doi.org/10.5281/zenodo.6421345
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(Price et al., 2021) R packages offer functionalities for its application for radiocar-
bon analyses, albeit with some minor differences in their implementation. The core 
idea of a finite Gaussian mixture is to conceive the observed data as the aggrega-
tion of a finite number of Gaussian distributions, each with its own mean and stand-
ard deviation. The inferential process consists of determining the number of mix-
ture components (i.e. Gaussian distributions), their associated parameters (i.e. mean 
and standard deviation), and their relative contributions (i.e. expected proportion 
of the data), which provides a flexible range of probability distribution shapes. In 
contrast to other applications (e.g. isotope-based diet reconstructions), the objective 
here is not the recovery of particular parameters but the overall shape of the prob-
ability distribution, which effectively portrays how the density of radiocarbon dates 
changed over time while accounting for sampling error and calibration effect. Price 
et al. (2021) have recently developed this technique specifically for the use of demo-
graphic archaeology by stressing the importance of the direct computation of the 
likelihood (see also below). They provide a Bayesian workflow and an associated R 
package to facilitate its application (baydem), allowing users to assign specific pri-
ors or to estimate the optimal number of mixture components. They illustrate their 
technique by examining the radiocarbon record of the Maya city of Tikal, showing 
how their approach is consistent with previous studies based on other lines of evi-
dence and proxies, whilst providing a more precise estimate of the timing of key 
demographic events.

The three approaches discussed above provide more robust alternatives to SPD 
for visualising the radiocarbon density record. One of the most appealing aspects 
shared by all solutions is that, in contrast to other methods described below, some 
of them require a relatively smaller number of assumptions by the end-user. OxCal’s 
KDE can be fully automated, and cKDE requires only the number of bootstrap itera-
tions and the kernel bandwidth size. Bayesian finite Gaussian mixture models do, 
however, require additional user-defined settings, including hyperparameters and 
the number of mixture components. The latter is a key parameter as it defines the 
complexity of the resulting shape of the density distribution, but users can specify 
multiple values and carry out model selection via Pareto smoothed importance sam-
pling (PSIS) to determine the optimal number whilst avoiding overfitting. There is, 
however, a substantial variation in terms of computational costs. cKDE with boot-
strapping is a relatively fast method that will take just a few minutes even when the 
sample size is relatively large; baydem’s Bayesian finite Gaussian mixture model 
would require a much longer processing time, especially when dealing with larger 
sample sizes and the range of mixture components to be explored is high. OxCal’s 
KDE comes with the highest computational cost, with runtimes ranging from sev-
eral hours to a few days when the sample size is above 1000 dates. Despite these dif-
ferences in computational costs, the difference in the output (particularly about the 
“true” population) can be negligible in many situations (Fig. 1, see also Price et al., 
2021), particularly when sample sizes are large.

In contrast to the other methods detailed below, these reconstructive approaches 
can be seen as the go-to solution for any preliminary assessment of the available 
data. These approaches are particularly appealing because they do not require the 
user to assume a priori a specific shape of the underlying density distribution. 
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However, there are two things to consider. The first relates to the unavoidable weak-
ness of all three approaches when dealing with smaller sample sizes (see Fig.  1, 
third column). Confidence envelopes are larger in these cases, but they might still 
fail to include the true underlying probability distribution. Unfortunately, because of 
the very nature of these models, there is no way to determine an optimal minimum 
sample size as this would depend on the scale and magnitude of the signals one is 
hoping to reconstruct. The second issue stems from the fact that these tools can be 
abused as inductive inference engines. The confidence that visual outputs produced 
by these methods are more reliable than SPDs can easily entice scholars to develop 
post-hoc explanations without formal and direct testing.

Null‑Hypothesis Significance Testing (NHST) approaches

Approaches in this category are designed to address the limitation of reconstruc-
tive methods by formally examining specific hypotheses. For example, one might be 
interested in determining whether observed time frequencies of radiocarbon dates 
conform to or deviate from what we should expect from an exponential population 
growth with a particular rate or whether two regions have experienced similar popu-
lation trajectories during a specific time window. These examples are well suited for 
applying a null-hypothesis significance testing (NHST) framework.

The number of case studies employing NHST for examining radiocarbon 
time–frequency data has grown substantially since the publication of the seminal 
paper by Shennan and colleagues (2013), who first introduced a Monte-Carlo simu-
lation approach that underpins most of the current applications. A comprehensive 
review of these approaches and an introduction to a dedicated R package that facili-
tates their applications is provided elsewhere (Crema & Bevan, 2021), but it is worth 
highlighting here the core idea behind these methods and, more importantly, their 
limitations in practical applications.

The Monte-Carlo simulation approach introduced by Shennan et al. (2013) con-
sists of comparing the observed SPD against a distribution of SPDs that one should 
expect to obtain given a particular null model. The intuition here is that given a 
growth model and a sample size of radiocarbon dates, one can iteratively gener-
ate an ensemble of SPDs and determine whether the observed SPD can be distin-
guished from those or not. In practical terms, such a null model is conceptualised as 
a sequence of probabilities values associated with each calendar year, e.g. P(t = 2500 
BP) = 0.001, P(t = 2499 BP) = 0.002, and P(t = 2498 BP) = 0.003. This effectively 
formalises the simple notion that if a particular year is assumed to have twice the 
population size of another, we would assume that the number of expected dates 
(hence the associated probabilities) would be two times larger. This discrete proba-
bility distribution is used to simulate n dates, with n equivalent to the observed sam-
ple size. The resulting set of calendar dates is then converted into 14C age by “back-
calibration”, and a measurement error, sampled with replacement from the observed 
data, is randomly assigned to each. This workflow generates n radiocarbon dates that 
we should expect to obtain if the null hypothesis was true, and the resulting SPD 
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can be constructed using standard procedures. To account for variations arising from 
sampling error, this process is repeated many times. The resulting distribution of 
SPDs is then compared against the empirically observed one in two ways. The first 
consists of displaying the simulation envelope against the observed data and visually 
identifying regions of positive and negative deviations that represent time interval 
where the density of radiocarbon dates was higher or lower than the one expected by 
the null model. The second consists of retrieving a single, global P value based on 
a test statistic computed from the aggregate deviation from the simulation envelope 
(see Timpson et al., 2014 for details).

The MCMC approach effectively addresses two of the most problematic issues 
(i.e. sampling error and calibration effect) by emulating their consequences in the 
Monte-Carlo simulation routine. While there have been some minor modifications 
in the method (see, e.g. the use of different algorithms for generating samples—see 
Crema & Bevan, 2021), as well as some follow-up secondary analyses (e.g. Edin-
borough et al., 2017), the fundamental approach remains the same and is imple-
mented in the R packages rcarbon (Crema & Bevan, 2021) and ADMUR (Timpson 
et al., 2021).

The method described above is effectively a one-sample test where the observed 
SPD is compared against a user-defined theoretical model. In many situations, how-
ever, the key objective is to compare two or more SPDs to each other rather than 
against a theoretical model. Examples include the comparison of the population tra-
jectory of two or more geographic regions (Shennan et al., 2013) or the relative pro-
portion of different site types (e.g. monuments vs settlements, as in Collard et al., 
2010) or dated samples (e.g. wild vs domesticated plants; as in Stevens & Fuller, 
2012). All these cases can be tackled using a randomisation test, which simply con-
sists of (1) assigning a mark to each radiocarbon date defining its membership to a 
particular set (e.g. region A and region B); (2) generating a separate SPD for each 
set; (3) randomly shuffling the marks assigned to the dates, and generating an SPD 
for each set again; (4) repeating the previous step multiple times; (5) comparing the 
observed SPD obtained in step 2 against the distribution of SPDs obtained in step 4 
using a similar procedure to the one-sample Monte-Carlo method described above. 
Such mark permutation test (Crema, Habu, et al., 2016; Crema, Kandler, et al., 
2016; but see also Dye, 1995 for a similar earlier application) provides a direct test 
on whether multiple SPDs have similar shapes and is currently implemented in the 
rcarbon R package. Extensions of this approach include hot-spot analyses for detect-
ing spatial heterogeneity in growth rates (Crema et al., 2017) and formal testing of 
resilience-resistance to external perturbation (Riris & de Souza, 2021).

NHST approaches to the analysis of time–frequency data have successfully 
introduced a more robust inferential process that overcame many of the limitations 
imposed by simple visual assessments of SPDs. While these advances are important 
steps forward; they also share the same kind of problems afflicting the NHST frame-
work in general. Three of them are particularly noteworthy and deserve some careful 
consideration.

Firstly, the interpretation of P values should account that these are both a func-
tion of sample and effect sizes. While I am not aware of any systematic survey on 
the misinterpretation of P values in archaeology, review studies in other fields that 
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employ statistical inference more routinely suggest that its definition and interpreta-
tion are often incorrect (e.g. Gliner et al., 2002, Greenland et al., 2016). A high P 
value should not be interpreted as a goodness of fit of the radiocarbon record to the 
proposed null model, while low P values can easily be obtained if there is a suf-
ficiently large sample size, even if the effect size (i.e. the deviation from the null 
hypothesis) is comparatively small. The second point highlights the main inferential 
limitation of NHST, particularly when quantifiable estimates of effect sizes are not 
available, as in this case. Testing whether an observed SPD deviates from a particu-
lar exponential growth rate or determining whether two regions have different tra-
jectories are examples of point hypotheses, i.e. a hypothesis that evaluates a single 
value. Strictly speaking, we already know that the null hypothesis is incorrect—an 
SPD would unlikely have exactly a particular exponential growth rate at its 7th deci-
mal point, and two regions would never have perfectly identical population dynam-
ics. What matters is how and how much the observed data deviates from a particu-
lar null hypothesis, and this is not something that can be inferred from P values. 
Obtaining a statistically significant result might well just tell us only that we have a 
large number of radiocarbon dates in our databases.

Secondly, while the selection of the null hypothesis for permutation tests is typi-
cally straightforward, one-sample Monte-Carlo tests require a user-defined growth 
model. This means that depending on the choice of this null model, global P val-
ues, as well as local positive and negative deviations from the simulation envelope, 
can vary. For example, using an exponential growth null model for radiocarbon fre-
quency data characterised by a logistic growth would yield a negative deviation for 
time intervals where the population reached its carrying capacity. Similarly, large 
deviations from the null model during early sections of the window of analyses 
can lead to misleading signals in later portions even if the underlying shape of the 
SPDs are similar. Comparing rates of change of the SPDs can partly solve the prob-
lem (see, e.g. Crema & Kobayashi, 2020, Arroyo-Kalin & Riris, 2021), but clearly, 
positive and negative deviations should not be uncritically interpreted as signals 
of population boom and busts. It is also worth pointing out that some instances of 
local deviations are expected to be false positives (see Timpson et al., 2021 for dis-
cussion), and as such, interpretation of these plots should only be made only if the 
global P value suggests a rejection of the null hypothesis in the first place.

Thirdly, it should be noted that the one-sample Monte-Carlo method is designed 
to test the observed SPD against a particular parametrisation of a model. In other 
words, the question that is being asked is not whether a given data follows, for 
example, an exponential growth, but whether it follows an exponential growth with 
a specific growth rate r. It follows that rejecting a particular rate r does not necessar-
ily imply that all exponential growth models are rejected. In practice, however, one 
could test against the most probable value of r so that its rejection would imply the 
rejection of all other values of r and consequently the model as a whole. The selec-
tion of r (or any other parameters) is typically obtained by fitting a regression model 
to the observed SPD values. As discussed above (and explored in Carleton, 2021), 
these estimates can be biased (see also Fig. 2). It is difficult to determine whether 
the impact of this discrepancy can have significant inferential consequences, and it 
is worth noting that the approach does not necessitate a workflow where the null 
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model is based on the observed data. For example, Silva and Vander Linden (2017) 
examined SPDs of Neolithic Europe using the growth rate estimated from pre-exist-
ing Mesolithic populations, while Crema and Kobayashi (2020) have compared an 
SPD of the Jomon period in central Japan against a null model based on the fluctua-
tions of independently dated pit-dwellings.

Model‑Fitting Approaches

Both reconstructive and NHST approaches are commonly used as exploratory 
devices that provide the basis for developing more sophisticated explanatory mod-
els. These are, however, mostly limited to speculative statements that are rarely 
tested directly or formally compared against alternative hypotheses. The desire to 
move beyond this inferential framework has led to a steadily growing number of 
studies that have attempted to use SPDs in more ingenious ways. In many cases, 
however, this endeavour is being pursued by directly using SPDs as the observed 
data, effectively ignoring the potential bias of sampling error and calibration effects 
(see discussion above).

In 2021 alone, four different solutions have been developed to address these 
issues and provide a framework that can be used to fit putative growth models, infer 
their parameters, and carry out formal comparisons between competing hypotheses. 
While some of these approaches share similarities from a methodological stand-
point, they are effectively distinct approaches with different accuracy, flexibility, and 
computational performance levels.

Fig. 2  Estimates and 95% confidence interval of a fitted exponential growth rate on a simulated dataset 
with two different sample sizes (n = 50 and n = 500) using: a direct regression fit on the SPD; b Bayes-
ian radiocarbon-dated event count (REC) model; c maximum likelihood fit via the ADMUR package; 
d) Bayesian hierarchical model via nimbleCarbon package; e) approximate Bayesian computation with 
rejection algorithm. Real growth rate is shown as a dashed line. R scripts and details required for gener-
ating the figures are available at https:// github. com/ ercre ma/ c14de morev iew and archived on https:// doi. 
org/ 10. 5281/ zenodo. 64213 45

https://github.com/ercrema/c14demoreview
https://doi.org/10.5281/zenodo.6421345
https://doi.org/10.5281/zenodo.6421345
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Carleton (2021) proposes a hierarchical Bayesian workflow named Radiocarbon-
dated Event Count model (hereafter REC model), which models the radiocarbon 
record as a one-dimensional point process with a time-varying intensity parameter 
λ(t). REC consists of fitting a hierarchical generalised linear model (GLM) that 
includes time as one of its covariates and optionally a set of additional independent 
variables (e.g. climate record). The key idea behind REC is to tackle the problem of 
chronological uncertainty by sampling n sets of random calendar dates from the cal-
ibrated distribution of each radiocarbon date and generating n vectors of count fre-
quencies based on user-defined temporal bins. These sets of count data are then fit-
ted using either a Poisson or negative binomial regression. The hierarchical structure 
of REC ensures that the distribution of the n regression coefficients is directly mod-
elled using Gaussian distributions, which moments are effectively the estimate and 
the associated uncertainty of our parameters of interest. Carleton tested the accu-
racy of the REC model by generating a simulated dataset with a known exponential 
growth rate and showed that although it fails to recover the correct value within its 
posterior range, it does offer a considerable improvement over the direct applica-
tion of GLM on SPD values (Carleton, 2021, but see also Fig.  2). The two main 
limitations of this approach are its high computational cost, which increases when 
the temporal resolution and the number of sampled sets of dates n are high, and the 
requirement for a comparatively large sample size. The latter point is intrinsically 
linked to the idea of using a count-based statistic where effectively the samples are 
not the observed number of dates but the number of temporal bins. It follows that an 
absence of dates in a particular bin could be evidence of low intensity or simply the 
effect of sampling error. In other words, the sampling procedures address the issue 
of chronological uncertainty but not sampling error. When a larger number of radio-
carbon dates is available, the potential bias in the output is reduced, but when sam-
ple sizes are small, one should interpret the estimates as descriptive statistics of the 
sample rather than inferred population parameters. Despite these shortcomings, the 
opportunity to directly integrate external covariates is appealing and has already led 
to its application in determining the role of climate change in the extinction of qua-
ternary megafauna in North America (Stewart et al., 2021). A dedicated R package 
(chronup) with a revised method that addresses some of these concerns is currently 
being developed (see Carleton & Campbell, 2021).

Porčić et al. (2021) have instead employed a generative inference approach 
where estimates are made by first simulating a large collection of SPDs with the 
same samples size as the observed data and using different “candidate” parameter 
combinations of a particular population model. These outputs are then individu-
ally compared to the observed SPD, and the parameter values used in the subset 
of simulations with the closes fit to this target are interpreted as an approxima-
tion of the estimate. This approach, known as approximate Bayesian computation 
(hereafter ABC), was initially developed in population genetics (Beaumont et al., 
2002) and has been successfully applied in different fields, including archaeology 
(Carrignon et al., 2020; Crema, Habu, et al., 2016; Crema, Kandler, et al., 2016; 
Kovacevic et al., 2015). In the case of radiocarbon frequency data, the generative 
approach effectively solves the problem of sampling error and calibration effects 
following the same principles of the one-sample Monte-Carlo simulation method 
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described above. The key difference is the definition of an initial prior distribu-
tion of possible parameter values from which these SPDs are simulated. Porčić et 
al. (2021) used a distance measure to evaluate the similarity between their can-
didate and observed SPDs, which they then used to define a subset of parameter 
combinations yielding the closest fit to data. These subsets are approximations 
of the posterior distribution for each of the model parameters. The most appeal-
ing feature of ABC is the great flexibility in defining the generative model, as 
evidenced by its recent application coupled with agent-based simulations (Car-
rignon et al., 2020). The already mentioned re-analyses of the radiocarbon record 
from Rapa Nui by Di Napoli et al. (2021) is an example that showcases how this 
approach can be used to fit complex ecological models such as logistic growths 
with time-varying and externally dependent carrying capacities. However, the 
flexibility of ABC is countered by the extreme computational cost required to 
obtain a sufficiently large number of posterior samples for an accurate and precise 
estimate of the parameter of interest. The development of more efficient algo-
rithms (Beaumont, 2019) is reducing this computational cost, but part of the issue 
is also dictated by the details of the simulation model itself. While there are no 
dedicated software packages for this approach either, both Porčić et al., 2021 and 
Di Napoli et al., 2021 provide R scripts that can be tailored to specific needs (see 
also the script used for Fig. 2 below).

ABC is typically employed in situations where the likelihood function of a par-
ticular model cannot be numerically computed and hence substituted by a large 
number of simulations and a measure of discrepancy between target and candidate. 
Numerical solutions of the likelihood function are available for common probability 
distributions, such as the uniform or the Gaussian, that are routinely employed in 
radiocarbon phase modelling (Buck et al., 1992). However, these probability dis-
tributions rarely represent suitable models of population change (but see the finite 
Gaussian mixture model discussed), particularly so when the latter is more complex, 
as in the example of the time-varying carrying capacity model described above. 
From a mathematical standpoint, the complexity arises because time is modelled 
as a continuum, and hence the likelihood is based on a probability density func-
tion. However, the likelihood calculation becomes trivial by treating time as dis-
crete (i.e. using individual calendar years as units) and using probability mass func-
tions to model changes in the density of radiocarbon dates over a given interval. 
Given a population growth model m with some parameters θ1, θ2, … θk representing 
the probabilities of observing a radiocarbon date for each k year within the win-
dow of analyses, the likelihood is equivalent to the product of the probabilities of 
the observed events. For example, if our sample consists of three dates x1 = 3200, 
x2 = 3300, and x3 = 2800, and their probabilities for a particular growth model with 
some defined parameter value y are π1 = 0.02, π2 = 0.023, and π3 = 0.001, then the 
likelihood L(θ = y| x1,x2,x3) is equivalent to π1⨯ π2 ⨯π3, or 0.00000046. One can esti-
mate the parameter y yielding the highest likelihood given these three dates. The 
problem is that radiocarbon dates are not single values but are instead described by 
a probability distribution that results from its measurement error and the calibra-
tion process. Timpson et al. (2021) account for this measurement error by basically 
calculating the scalar product between the model probabilities and the probabilities 
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from the calibrated dates. For example, suppose that x1 now has a probability of 
being equal to 3200 of 0.4 and a probability of being 3201 of 0.6. We would update 
π1 as (0.4 ⨯ probability of obtaining 3200 according to the model) ⨯ (0.6 ⨯ probabil-
ity of getting 3201 according to the model).

This solution effectively enables the use of statistical tools based on likelihood 
estimation. Model parameters can be inferred based on maximum likelihood, and 
alternative hypotheses can be compared using information criteria. Because the cal-
culation of the likelihood function is effectively always the same, the model is also 
highly flexible. Any mathematical model that can generate discrete probabilities 
within a bounded range of calendar years can effectively be fitted with this approach. 
Timpson et al. (2021) make good use of this flexibility and examined the radiocar-
bon record from the South American Arid Diagonal using a continuous piecewise 
linear (CPL) model. The population growth model they employ effectively consists 
of n linear segments and n-1 hinge-points, which requires 2n-1 parameters to be 
inferred. By using information criteria, they explore models with different numbers 
of segments and show that 3-CPL (i.e. a three-segment model) provides the best 
fit to the data, providing key information such as when major shifts in population 
growth rate occurred in the South American Arid Diagonal region. This explicit 
model-based framework also enables a more robust approach toward typical prob-
lems encountered in the analyses of SPDs. For example, rather than applying a 
taphonomic “correction” to the observed summed probabilities, ADMUR—the R 
package developed by Timpson et al. (2021)—allows for the direct integration of the 
taphonomic loss model in the calculation of the likelihood and consequently of the 
parameter estimates.

Crema and Shoda (2021) offer a Bayesian alternative to the solution developed 
by Timpson et al. (2021). While the calculation of the likelihood function follows 
the same logic based on the shift from probability density to probability mass func-
tions, the modelling of measurements errors and the possibility of using priors make 
their approach different. In contrast to Timpson et al. (2021), their model considers 
calibrated probability distributions to be posteriors that can be informed both from 
the individual observation (e.g. laboratory measurement errors) and the higher-level 
model describing the variation in the density of dates over time. This is conceptually 
the same approach used in Bayesian phase models typically employed in software 
packages such as OxCal and BCal. As a result, the fitted model estimates the pop-
ulation-level parameters (e.g. exponential growth rate) and the posterior probability 
of each calibrated radiocarbon date. The second, and perhaps more crucial differ-
ence, is the possibility to provide prior distributions to parameters of interest. While 
strong priors and strict constraints as those occasionally implemented in Bayesian 
phase models are unlikely to be useful in this context, the opportunity to use weakly 
informative priors that can “nudge” and reduce the possible range of parameters 
values (e.g. by reducing the probability of biologically implausible growth rates) 
can enormously help the inference process when sample sizes are limited, allowing 
researchers to implement stricter inclusion criteria for their available radiocarbon 
datasets.

The Bayesian nature of this inferential framework is particularly useful when 
the full extent of the uncertainty associated with the individual parameters is of 
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interest. For example, in their case study, Crema & Shoda (2021) aimed to deter-
mine whether and when we observe a significant shift in population growth rate on 
the island of Kyushu in south-west Japan at the onset of the introduction of rice 
farming. They estimated this change-point to be around the seventh-eighth century 
BC and used the earliest dated charred remains of rice to estimate a temporal lag 
of several centuries between the putative date of the introduction of farming and 
the timing of the demographic response. Similarly, Kim et al. (2021) investigated 
whether the population crash that occurred during the latter half of the Chulmun 
period (10,000–3,500 cal BP) resulted from mid-4th millennium climatic deteriora-
tion. To evaluate this hypothesis, they measured the temporal lag between the esti-
mated start point of the population decline (as inferred from radiocarbon density) 
and the timing of abrupt changes estimated from Bayesian age-depth models of 
different proxies. Because both measures are characterised by chronological uncer-
tainty, Kim et al. (2021) computed distributions of age differences from the esti-
mated posteriors and calculated the probability that the population crash initiated 
after the climatic deterioration. While there were some differences, they showed that 
the probability of such an event was close to zero for at least two of the three proxies 
examined.

It is also worth noting that because the computational framework developed by 
Crema & Shoda (2021) is essentially just a Bayesian hierarchical model, there are 
opportunities to construct models that can benefit from more complex structures. 
For example, cross-regional analyses can employ a hierarchical structure where 
growth rates of each region are inferred via partial-pooling, i.e. informed to some 
extent by the growth rates of other regions. This provides more robust estimates 
compared to separated analyses for each region and, at the same time, offers oppor-
tunities to directly model interregional variability in growth rates.

The four model-fitting approaches described here all offer substantially more 
robust ways to infer model parameters compared to regression models directly 
applied to SPDs. Figure 2 shows the fitted value and the 95% confidence interval of 
the growth rate of two samples of 50 and 500 radiocarbon dates. The direct regres-
sion fit to the SPD fails to include the actual growth rate (dashed line), and the differ-
ence in sample size has minimal to no impact on the width of the confidence inter-
val. Three out of the four approaches discussed here successfully manage to include 
the actual growth rate in their confidence intervals, with a wider confidence interval 
for the smaller data set. REC shows a mixed outcome instead, with the actual rate 
recovered only for the larger set and the smaller set yielding a narrower confidence 
interval than the other methods examined here. Similarly, although recovering the 
true parameter, the ABC approach performs less efficiently with substantially wider 
posterior intervals.

Model-fitting approaches also provide an important additional benefit of being 
able to formally compare alternative growth models against the observed data. For 
example, Timpson et al. (2021) employed Schwarz Criterion to determine the opti-
mal number of hinges in their CPL model, and similarly, Di Napoli et al. (2021) used 
Bayes Factors to compare different ecological models, and Crema and Shoda (2021) 
used the widely applicable information criterion (WAIC) to determine whether a 
model with change point provided more support in contrast to simple exponential 
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growth. The epistemological shift from a single to multi-model inference is highly 
appealing, as it allows for formal grounds for the contrasting of competing hypoth-
eses of demographic histories. There are, however, a couple of important issues to 
consider. Firstly, as mentioned earlier, the calculation of AIC and other informa-
tion criteria on regression models directly applied to SPD values returns incorrect 
estimates. As such, those interested in this inferential framework will have to resort 
to one of the approaches described in this section. Secondly, multi-model inference 
provides only a relative measure of goodness-of-fit; the best model among the can-
didates can still be, in absolute terms, a terrible model. Timpson et al. (2021) tackle 
this problem by employing a goodness-of-fit test that is effectively equivalent to the 
one-sample Monte Carlo test discussed earlier, while both Crema and Shoda (2021) 
and Di Napoli et al. (2021) employ a graphical posterior predictive check. While the 
robustness of these sanity checks is limited with smaller sample sizes, they offer an 
important tool for the multi-model inference of radiocarbon frequency data.

Where Next?

The methodological review presented here showcases the growing range of ana-
lytical approaches designed to infer demographic changes from radiocarbon density 
data. While this trend is dictated by similar objectives and hence can be conceived 
as genuine alternatives, most of the methods discussed above were developed with 
different needs in mind. Some of the proposed solutions, particularly those grouped 
under model-fitting approaches, provide the foundation for developing bespoke anal-
yses tailored to specific problems and questions arising from a given dataset. Others, 
such as those described here as reconstructive approaches, offer all-around solutions 
that are more suitable for an initial assessment of the available evidence. There is 
clearly no single go-to solution, and users should consider options according to their 
objectives. However, it is useful to highlight three recommendations that transcend 
these classifications and have often been raised by scholars who developed these 
techniques.

1. SPD curves should never be exclusively interpreted from their visualisations nor 
directlyused for statistical inference. As mentioned repeatedly throughout this 
paper, the impact of sampling error and calibration effect is simply too significant 
to be ignored. Visual assessments of SPD can, however, provide important cues, 
particularly when dealing with broader-scale multimillennial trends. As such, if 
the objective of the analysis is data description and exploration, the adoption of 
reconstructive approaches that visually provides an uncertainty envelope should 
be considered. While in some cases these methods might be too conservative and 
hide shorter scale fluctuations, they can avoid hasty conclusions based on little 
evidence.

2. Consider running sensitivity analysis. Many of the methods described above rely 
on some fine-tune settings where users are required to provide some numeri-
cal figures. These include, for example, binning window sizes for aggregating 
radiocarbon dates from the same site or bandwidth sizes in some Kernel den-
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sity estimates. Although in some cases one can justify their choices, the relative 
impact of how changing these parameters affects the ultimate inference should 
be explored when possible (see, e.g. Riris, 2018; Feeser et al., 2019). Similarly, 
the inclusion or exclusion of a particular set of samples should be evaluated when 
possible. Such sensitivity analyses would reveal how changing these settings have 
no qualitative impact on the conclusion in the best-case scenario. Conversely, in 
the worst-case scenario, the ultimate results would depend on these decisions.

3. Carry-out tactical models and what-if experiments. Tactical models (Crema, 2018; 
Lake, 2014; Orton, 1973) and what-if experiments (Buck & Meson, 2015; Hinz, 
2020; Holland-Lulewicz & Ritchison, 2021) are simulation techniques consisting 
of generating, in silico, artificial archaeological data under known conditions to 
determine the robustness of analytical techniques, explore the impact of particu-
lar biases, or estimate necessary sample sizes and guide data collection. These 
are powerful yet relatively underutilised tools that can enormously help in any 
statistical analysis. It is thus not surprising that these techniques have been used 
in radiocarbon density-based demographic research, either to establish the robust-
ness of new or existing techniques (Contreras & Meadows, 2014; Edinborough et 
al., 2017; Crema et al., 2017; Timpson et al., 2021; Carleton, 2021; Price et al., 
2021), question the impact of various forms of biases (e.g. Surovell & Branting-
ham, 2007; Davies et al., 2016; Bevan & Crema, 2021), or determine whether 
the available sample size is sufficient to recover putative demographic events 
(e.g. Hinz, 2020; Crema & Shoda, 2021). These techniques provide invaluable 
insights into the robustness of our analyses. They can be tailored to the specific 
needs and challenges of particular contexts and even guide alternative solutions 
or more targeted future sampling strategies.

Some of these recommendations can be challenging to implement, particularly 
as they cannot be part of a generalised workflow and require a good understanding 
of the data set. Some techniques, such as ABC and OxCal’s KDE, can also be com-
putational too prohibitive to allow exhaustive sensitivity analyses or what-if experi-
ments. Nonetheless, the benefit these tools provide is essential if we wish to make 
robust inferences about past population dynamics.

Despite these outstanding challenges, it is unquestionable that the appeal of radi-
ocarbon-based population inference for comparative research remains. We are now 
able to, at least in principle, develop demographic models that are not limited to 
regional constraints of archaeological periodisations and start investigating com-
mon trajectories and detect anomalies. Several exciting studies have already started 
to move towards such a line of research, estimating benchmark figures of long-term 
population growth rates (Zahid et al., 2016) or identifying shared trajectories in 
their fluctuation at the global scale (Freeman et al.,  2018). Similarly, continental-
scale windows of analysis are revealing new insights and providing the grounds for 
developing new hypotheses (Bird et al., 2020; Crema et al., 2017; Palmisano et al., 
2021; Riris & Arroyo-Kalin, 2019; Shennan et al., 2013). While the methodological 
developments reviewed in this paper showcase the effort made by different research 
groups in addressing many of the concerns raised against early applications of radi-
ocarbon density-based demographic inference, there is a clear trade-off between 
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these large-scale comparative analyses and the inevitable increase in the num-
ber of biases that larger datasets entail. Local anomalies in the radiocarbon record 
might provide genuine insights that can help understand the demographic history 
of a particular region but might simply be the result of a spatially or chronologi-
cally structured bias. Incorrect inferences are inevitable, and the stakes can often be 
high. Still, the methodological advances made over the last few years and the high 
reward of expanding comparative demographic research in deep history suggest it is 
an endeavour well worth pursuing.
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