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he last decade saw an exceptional increase in the num-

ber of archaeological simulations covering a range of

topics as diverse as settlement dynamics, spread of
farming, origins of inequality, and cultural evolution. The
wider accessibility of dedicated programming languages
(e.g., NetLogo for Agent-Based Modelling), and the flexibility
of general-purpose data science languages (e.g., R and
Python) are enabling a new generation of scholars and stu-
dents to dive into the field of archaeological simulations with
less effort than ever. Retrospective papers are continuously
being published, and it is becoming increasingly common to
see research projects including a “modeller” postdoctoral
position. Simulations are certainly not new in archaeology
(see Lake 2014 for a historical review), and future archaeolo-
gists will know whether we are finally approaching the
“plateau of productivity” of the notorious hype cycle or if we
are still ascending the “peak of inflated expectation” (and
about to face a “trough of disillusionment”).

The question of where we are now and where we are headed
becomes harder (if not pointless) to answer once we consider
the many flavours of archaeological simulations that have
been proposed in the last 40 years. Several classifications have
been suggested to make sense of this rich variation, using cri-
teria ranging from thematic content of the model to its degree
of realism or abstraction. One such classification, originally
devised by Mithen and discussed in detail by Lake (2014),
focuses on the ultimate objective of the simulation model.
Simulations can thus be used to support theory building by pro-
viding a heuristic device to explore the implications of one or
more behavioural assumptions; be part of method development,
by generating artificial datasets to test the efficiency and the
limitations of an analytical technique; or be based on a partic-
ular historical-geographic context, with outputs that are
directly comparable to observed data, and hence be employed
for hypothesis testing. Pure theory-building models have a long
history across different fields of studies, and although occa-
sionally criticised for their high levels of abstraction (cf. Dron-
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amraju 2011: Ernst Mayr’s critique of “beanbag genetics” in
population genetics), they reached substantial maturity in sub-
fields such as cultural evolutionary studies. The success of
method development simulations are harder to evaluate, partly
because of the comparatively small number of archaeologists
engaged in the development of new statistical techniques.
Nevertheless, these simulations are successfully being
employed to assess the reliability of existing techniques
(within the field or “borrowed” from other disciplines), often
to ascertain whether they are robust to different forms of
archaeological biases such as spatially uneven sampling strate-
gies, time-dependent taphonomic loss, and time-averaging
(e.g., Crema et al. 2017; Premo 2014).

The third category in this classification—hypothesis-testing
models—is the main focus of this article. As pointed out by
Lake (2014), the distinction between hypothesis-testing models
and theory building is not always clear-cut, and very often the
two objectives coexist informally in the same simulation.
This is particularly the case for empirically grounded models
designed to emulate a specific historical window and from
this to explore more general aspects of human behaviour
such as the emergence of hierarchical societies (Kohler et al.
2012). While there have been discussions on the effective-
ness of such a “realist-particularist” approach (Costopoulos
2015; Kohler 2015), it is undeniable that a substantive num-
ber of archaeological simulations are designed to emulate,
whether for hypothesis testing or external validation, some
aspects of reality in a predefined window of time and space.
Yet, formal comparisons between simulation outputs and
the empirical record are not as frequently carried out as one
might expect, and in many cases attempts have been limited
to visual or qualitative inspections. Moreover, the dominant
focus of many works has been model building and descrip-
tion (and to a lesser extent parameter exploration), with far
less attention given to the fit (or the lack thereof) between
simulation outputs and observed data as well as the broader
implications of the whole exercise.
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Two, Four, and Six

In 1960, P.C. Wason published the results of a psychological
experiment that aimed to explore a particular form of inferen-
tial bias. Participants were presented with a numerical
sequence—2, 4, and 6—and were asked to identify the under-
lying “rule” generating the numbers. To aid the process, they
were allowed to propose as many “test” sequences of three
numbers as they wished and were informed whether the pro-
posed triplet could also be generated by the rule. Most partic-
ipants proposed sequences designed to confirm their initial
clue (e.g., that the rule was “increasing intervals of two”, sug-
gesting for example 10, 12, and 14). When informed that their
proposed triplet could also be generated by the algorithm, the
participants would stop the testing procedure (or continue
further tests with the same hypothesised rule), ultimately
concluding that their algorithm was the correct one. The right
answer, however, was “increasing numbers,” a simple rule
that can yield a wide range of sequences (e.g., 1,2, and 3; 5,
25, and 125; 10, 98, and 99; etc.), matching outputs from a
variety of alternative and more complex rules (e.g., “increas-
ing intervals of two,” “increasing multiple of the first num-
ber,” etc.). Because the majority of participants were aiming
to reproduce the observed pattern and hence seeking to
“prove” their hypothesis, they failed to identify the correct
answer. In contrast, an approach designed to disprove an ini-
tial clue (e.g., by testing 4, 5, and 6) would have avoided such
a mistake.

Wasorn's study highlights our natural tendency to seek confir-
mation (rather than rejection) of our theories and hypothe-
ses and, more importantly, how this can lead to erroneous
conclusions when dealing with patterns that could have been
generated from more than one possible generative process—
i.e., when we are dealing with equifinality. The theoretical
implications of this problem and the related issue of multifi-
nality (same process, multiple possible patterns) have been
discussed in the literature (see, for example, Premo 2010),
and it is known to have even contributed to the abandon-
ment of the whole enterprise by early adopters such as Ian
Hodder (Lake 2014).

It would follow that if we are pursuing hypothesis testing, and
wish to avoid Wason's inferential pitfall we should be design-
ing simulation models to disprove our theories rather than
seeking their confirmation. This, however, introduces a par-
adoxical situation where the worst outcome in the external
validation of a computer simulation is a perfect fit to data. A
complete lack of fit can help dismiss parameter ranges, or
question the validity of key assumptions, while a partial fit
can generate new ideas on “what is missing,” with the simu-
lation model acting as a comparative template (Kohler et al.

2012). A perfect fit, which arguably would be rarely achieved
(especially with highly realistic models), would be less
informative—there would be nothing left to explain; alterna-
tive explanations are not considered and hence cannot be
dismissed a priori and, because of equifinality, we are not
able to conclusively state that the proposed model is the “cor-
rect” one.

A “Generative” Statistical Inference

It is surprising that the issues of equifinality and multifinality,
which are at the core of this problem, have not been dis-
cussed in relation to inferential statistics where the compar-
ison of model and data is the disciplinary bread and butter.
At its foundation, statistics is based on probability distribu-
tions, which capture the expected variation in the observed
data given a parameter value of a statistical model (e.g., what
are the probabilities of getting 0, 1, 2, 3, and 4 heads given 4
tosses of a coin with a probability of heads equal to 0.5?), and
likelihood functions, which capture the variation of the most
likely parameter values given the observed data (e.g., what
are the odds of getting 3 heads out of 4 tosses, using a coin
with a probability of heads equal to 0.1, 0.2 ,0.3, 0.4, and so
on). Although within the realm of a single model, the former
is a depiction of multifinality (a parameter value generating
different outcomes) and the latter of equifinality (multiple
parameter values generating the same outcome), and in both
cases variations (of the outcome or the parameters) are for-
mally quantified in probabilistic terms. How does inferential
statistics then deal with equifinality and multifinality? Either
by aiming at the rejection of a particular model (i.e., the fre-
quentist null-hypothesis testing approach) or by comparing
multiple models using information criteria. The latter
approach in particular can be used to directly test competing
hypotheses against each other, providing the possibility of
formally comparing alternative explanations for an observed
pattern (Rubio-Campillo et al. 2017), potentially drawn from
distinct bodies of archaeological theories (Eve and Crema
2014). If the objective of our modelling enterprise involves
some comparison with the empirical record, why are we not
adopting these, arguably better, inferential tools’?

There are at least three sets of reasons. First, pure hypothesis-
testing models in archaeological simulations are not com-
mon. As mentioned earlier, the great majority of empirically
ground, realistic simulations are simultaneously also theory-
building devices. Models are constructed on the basis of a
given historical-geographic context, but a substantial effort is
spent on exploring the parameter space to evaluate the con-
sequences of the embedded assumptions. One reason why
we do not observe pure hypothesis-testing models is that ideal
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null hypotheses or established alternative explanations that
are readily formalised in the literature are rarely available. In
other words, model-based archaeology is still in its early
stages, whereas theory building is still central and there are no
“off-the shelf” models ready to be tested against data. It is no
coincidence that the few notable exceptions where a simula-
tion-based, generative statistical inference has been used are
those with a well- and long-established body of formal mod-
els already available. For example, Crema and colleagues
(2016) have recently reexamined the Neolithic pottery assem-
blage from Merzbach Valley in Germany, comparing outputs
of a simulation model with different modes of social learn-
ing (unbiased, conformist, and anti-conformist) derived
from cultural evolutionary theory, whilst Pori and Nikoli
(2016) studied the demographic changes at the Mesolithic
site of Lepenski Vir in Serbia, using long-established popula-
tion growth models.

The small number of parameters and the comparatively high
levels of abstraction in these and other examples illustrate
the second reason why the adoption of a statistical inference
for the analysis of computer simulations is difficult. The
great majority of these models cannot be analytically
“solved,” so expected outputs of a given parameter value can
be obtained only through a simulation run. To obtain the
approximate equivalent of a probability distribution, we would
thus need to rerun a model with the same parameter settings
many times, and, crucially, to obtain something comparable
to a likelihood function, we would need to do this for every
possible combination of model parameters and record how
often, and under which circumstances, the output perfectly
matches the observed data. The number of simulations
required to achieve such a task becomes almost immediately
intractable with the increasing number of parameters. How-
ever, an approximate solution based on some measure of dis-
tance to the observation (rather than a perfect match) can
drastically reduce the computational requirements, making
the combination of statistical inference and simulation mod-
elling feasible. One of the most promising approaches in
this direction is approximate Bayesian computation (ABC), a
computational method that enables probabilistic estimates
of parameter values as well as comparisons of different mod-
els against the same observed data. Still, such an approach is
possible only by using modern computer technology, as the
number of required simulations is in the order of magnitude
of millions—well above the typical number of runs observed
in archaeological simulations.

Third, the choice of what exactly we are trying to “fit’ can

severely limit model design and even bias the inferential
process. Summary statistics that numerically describe com-
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plex phenomena (e.g., diversity indices) are very often insuf-
ficient, i.e., they entail a loss of information compared to the
full dataset and can introduce further levels of equifinality.
This is worsened by the fact that observed archaeological
data are also profoundly affected by postdepositional events,
sampling strategies, and loss of crucial information (e.g., via
time-averaging) that are rarely reproduced within simulation
models despite potentially shaping a large component of the
observed pattern.

A Future for Hypothesis-Testing Models?

Is there a future for pure hypothesis-testing models in
archaeology? Increased computational resources and a wider
development of formal models within archaeology can cer-
tainly benefit the use of approaches similar to ABC. This
seems to be the case for fields with a longer tradition and a
greater role of formal models such as population genetics.
Similarly, in ecology, attempts have been made to formalise
the comparison between the output agent-based simulations
and empirical data using ABC (van der Vaart et al. 2016), or
to devise alternative model selection criteria (Piou et al.
2009). The ABC approach itself is also benefiting from con-
tinuous methodological development and refinement by the
statistical community, showcasing how the combination of a
consolidated inferential paradigm with the flexibility of for-
mal simulation-based modelling is both an attractive and
promising cross-disciplinary research agenda. Within
archaeology, different bodies of theory will inevitably have
different stances towards this approach, and the temptation
to exclusively rely on borrowed models from adjacent fields
or to limit the inferential exercise to tractable problems, data,
and hypotheses will be the greatest limit of its wider applica-
tion. The lack of a unified body of theory in the social sci-
ences will on the one hand impede the spread of reusable
models, but at the same time will offer a unique opportunity
to contrast a wider range of alternative explanations directly
against data. Whether the latter will be achieved, or even
sought, remains an open question.
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Notes

1. Although it can be argued that seeking to identify a mis-
match between simulation and data shares some similarity to the
null-hypothesis testing approach.
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