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Research Council (CSIC), 08001 Barcelona, Spain; bDepartment of Humanities, Universitat Pompeu Fabra, 08005 Barcelona, Spain; cLaboratory of Molecular
Anthropology, Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; dEstonian Biocentre, 51010
Tartu, Estonia; eDepartment of Biology, University of Padova, 35131 Padua, Italy; fDepartment of Archaeology and Anthropology, University of Cambridge,
CB2 3DZ Cambridge, United Kingdom; gDepartment of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745
Jena, Germany; hInstitute for the Study of Literature and Tradition, Faculty of Social Sciences and Humanities, New University of Lisbon, 1069-061 Lisbon,
Portugal; and iCentre for the Coevolution of Biology and Culture, Department of Anthropology, Durham University, DH1 3LE Durham, United Kingdom

Edited by Marc W. Feldman, Stanford University, Stanford, CA, and approved June 13, 2017 (received for review September 1, 2016)

Observable patterns of cultural variation are consistently inter-
twined with demic movements, cultural diffusion, and adaptation
to different ecological contexts [Cavalli-Sforza and Feldman (1981)
Cultural Transmission and Evolution: A Quantitative Approach;
Boyd and Richerson (1985) Culture and the Evolutionary Process].
The quantitative study of gene–culture coevolution has focused in
particular on the mechanisms responsible for change in frequency
and attributes of cultural traits, the spread of cultural informa-
tion through demic and cultural diffusion, and detecting rela-
tionships between genetic and cultural lineages. Here, we make
use of worldwide whole-genome sequences [Pagani et al. (2016)
Nature 538:238–242] to assess the impact of processes involv-
ing population movement and replacement on cultural diversity,
focusing on the variability observed in folktale traditions (n = 596)
[Uther (2004) The Types of International Folktales: A Classifica-
tion and Bibliography. Based on the System of Antti Aarne and
Stith Thompson] in Eurasia. We find that a model of cultural dif-
fusion predicted by isolation-by-distance alone is not sufficient to
explain the observed patterns, especially at small spatial scales
(up to ∼4,000 km). We also provide an empirical approach to
infer presence and impact of ethnolinguistic barriers preventing
the unbiased transmission of both genetic and cultural informa-
tion. After correcting for the effect of ethnolinguistic boundaries,
we show that, of the alternative models that we propose, the one
entailing cultural diffusion biased by linguistic differences is the
most plausible. Additionally, we identify 15 tales that are more
likely to be predominantly transmitted through population move-
ment and replacement and locate putative focal areas for a set of
tales that are spread worldwide.

cultural diffusion | demic diffusion | whole-genome sequences | folktales |
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Advances in DNA sequencing have opened new ways for
exploring the demographic histories of human populations

and the relationship between patterns of genetic and cultural
diversity around the world. Newly available genome-wide evi-
dence enables us to go beyond the use of linguistic relationship as
a measure of common ancestry (1–3) and offers unprecedented
support for studying the mechanisms underlying the transmis-
sion of cultural information over space and time (4–11) as well
as the coevolution of genetic and cultural traits (12–18) across
populations.

A key question for research in this area concerns the extent to
which patterns of cultural diversity documented in the archaeo-
logical and ethnographic records have been generated by demic
processes (i.e., the movement of people carrying their own cul-
tural traditions with them) or cultural diffusion (i.e., the trans-
fer of information without or with limited population move-
ment/replacement) (6, 19, 20). Before tackling this question,
however, it is critical to note that demic processes and cultural

diffusion are not mutually exclusive conditions but rather, are
opposite extremes of a continuous gradient, with intermediate
and composite positions that more accurately represent empiri-
cal reality.

A broadly adopted null model of cultural diffusion draws on
the expectation that selectively neutral variants would form geo-
graphic clines produced over time by isolation-by-distance (IBD)
processes (21). Under an IBD model, individuals or groups that
are spatially closer to each other are expected to be more sim-
ilar than individuals or groups that are located farther apart.
A positive correlation between cultural dissimilarity and geo-
graphic distance between samples is, therefore, used to infer pro-
cesses of cultural transmission of nonadaptive information with-
out population replacement (8, 17). However, observed genetic
distance is the composite result of serial founder events, long-
term IBD, and subsequent migratory events, which imply recent
movement and resettling of people (22). A higher correlation
between genetic distance and cultural dissimilarity than between
culture and geography has, therefore, been proposed as a way to
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single out the relative effect of demic processes on the distribu-
tion of cultural variants (8).

In a recent study, Creanza et al. (17) investigated the process
responsible for the observed global distribution of (phonetic) lin-
guistic variability by comparing it with genetic and geographic
distances. The authors found high correlation between genetic
and geographic distances at a worldwide scale, whereas linguis-
tic distances were spatially autocorrelated only within a range of
∼10,000 km. The lack of residual correlation between genetic
and linguistic distances up to this spatial scale did not allow the
authors to reject their null model and was interpreted as a signal
of cultural diffusion being the main driver of the distribution of
phonetic variants in human populations.

The use of genetic variability as a plausible proxy to reject
cultural diffusion as the sole responsible for the distribution of
cultural traits depends on being able to disentangle genetic sig-
nals from geography. The high correlation between genetic and
geographic distances at a global scale (22) lowers the inferen-
tial power of this model. However, this relationship is not con-
stant across different geographic scales. We noted that the cor-
relation obtained between pairwise genetic distances is stronger
when measured across all possible population pairs at larger geo-
graphic scales, whereas it is considerably lower at smaller geo-
graphic distances (below ∼6,000 km for this dataset), possibly
because of more recent and short-range population movements
(Fig. 1A, yellow line). It is worth remembering that global trends
have been forming over the past ∼40,000 y, whereas most cul-
tural traditions are likely to have evolved more recently. This
claim is supported by previous studies (17) and suggests that the
effect of population movements independent from IBD can be
identified only within limited geographic scales. At this spatial
resolution, events shaping the distributions of genetic and cul-
tural divergence are more likely to occur at the same temporal
scale and hence, be more probably causally related.

Fig. 1. (A) Plot of product–moment correlation
values between pairwise genetic distance (both
whole genome and biased for linguistic barriers)
and pairwise geographic distance over cumulative
geographic distance. (B) Map showing the spatial
distribution of 33 populations in dataset MAIN.
Surface colors represent interpolated richness val-
ues (i.e., the number of folktales exhibited by
each population). Purple indicates higher values,
whereas yellow indicates lower numbers. (C) Exam-
ple of a map with SpaceMix results for genetic and
folktale distance both projected on standard geo-
graphic coordinates. It is evident how, overall, folk-
tale distribution (F) tends to cluster closer to geo-
graphic coordinates (dots), whereas the inferred
source and direction of possible genetic admix-
ture (G) are mismatched. For example, Burmese
and Yakut exhibit quite segregated folktale assem-
blages, whereas their putative source of genetic
admixture is closer in space. The case of Hun-
garian is emblematic for its folkloric assemblage
rooted in Europe, whereas its putative genetic (and
linguistic) source of admixture is located in the
Ural region.

An additional confounder is the potential effect of linguistic
barriers, which might cause departures from a pure IBD model
by constraining the exchange of genetic and/or cultural infor-
mation between demes belonging to different ethnolinguistic
groups. Given the relevance that spoken language has on the
transmission of folktales and the light but measurable impact
that they have for variants of individual tales in Europe (23),
ethnolinguistic barriers should also be considered as key com-
ponents of plausible alternative models to IBD.

Diffusion of Folktales: Investigating Mechanisms of Cultural
Transmission in the Genomic Era
Here, we capitalize on the short-range decoupling of genetic
and geographic distance to further infer mechanisms of genetic
and cultural coevolution by using newly available genomic evi-
dence (24) as an unbiased proxy of population relatedness. To
do so, we analyzed the observed distribution of a set of indi-
vidual folktales in Eurasia, looking for deviations from the null
model of cultural diffusion predicted by geographic distance
alone. Folktales are a ubiquitous and rigorously typed form of
human cultural expression and hence, particularly well-suited for
investigating cultural processes at wider cross-continental scale.
Researchers since the Brothers Grimm (25) have long theorized
about possible links between the spread of traditional narratives
and population dispersals and structure but found mixed levels
of support for this hypothesis when using indirect evidence for
demic processes, such as linguistic relationships among cultures.
One recent study suggested that, within the same linguistic fam-
ily (Indo-European), the distributions of a substantial number
of fairy tales were more consistent with linguistic relationships
than with their geographical proximity, suggesting that they were
inherited from common ancestral populations (3). This finding is
confirmed by the relevance that ethnolinguistic boundaries may
have for the transmission of variants of individual folktales in
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Europe. Ross et al. (23) have shown that, at population level,
geographic distribution explains more variability than ethnolin-
guistic grouping. At this scale, when controlling for the effect of
geography, linguistic boundaries do not show any residual signif-
icant relationship with folktale variant distribution, suggesting a
possible temporal mismatch between folktale and linguistic tra-
ditions. However, when individual folktales are considered, eth-
nolinguistic identity is a significant predictor. This fact suggests
that demes belonging to different ethnolinguistic affiliations may
undergo higher costs for the transmission of individual folktales,
even when they are closer in space. The simultaneous effect of
shared linguistic ancestry and spatial proximity was also docu-
mented on the distributions of folktales recorded among Arctic
hunter-gatherers (26).

Overview of This Study
In this study, we focus on 596 folktales comprising “animal tales”
and “tales of magic” (27) typed as present (one) or absent (zero)
in 33 populations (dataset MAIN), for which whole-genome
sequences are available and exhibiting presence of at least five
folktales (Fig. 1B, SI Appendix, and Dataset S1 Tables S1-2.1, S1-
2.2, S1-2.3, and S1-2.4). Following previous examples (8), we test
for deviations from a null model of pure cultural diffusion with-
out population replacement (IBD), in which geographic distance
alone is the best predictor of the decreasing number of shared
folktales between pairs of populations. We measure and com-
pare the fit of a number of alternative models comprising (i) a
clinal model, in which populations belonging to different ethno-
linguistic groups are less likely to share folktales as predicted by
IBD (cultural diffusion with linguistic barriers); (ii) population
movement and admixture between demes (demic process) as a
substantial additional driver of folktale transmission; and (iii) a
demic process constrained by linguistic barriers.

We test our hypothesis first by visualizing possible mismatches
between actual geographic location of each population and
the location inferred by applying explicit models accounting
for genetic and cultural admixture (population movement with
replacement) (28). We quantify the impact of linguistic barriers
on both genetic and folktale variability using analysis of molecu-
lar variance (AMOVA) (29). We further investigate this by look-
ing for the set of linguistic barrier parameters (intensity and geo-
graphic buffer) that maximizes the fit between genetic distance
and geographic distance on the one hand and folktale distance
and geographic distance on the other hand. We use this parame-
ter combination to generate alternative models, with fitness that
is formally assessed at both a global scale and over cumula-
tive geographic distance. Following the assumptions of previous
works (8), we develop a method to identify those folktales that—
in the whole corpus—may be more likely to have been transmit-
ted through population movement and replacement, supporting
the idea that individual tales may have undergone different pro-
cesses. To provide a starting point for this additional analysis on
the diffusion of individual or smaller packages of tales, we infer
potential focal areas—intended as a putative proxy for center of
origin—of the most popular tales in the dataset.

Results
Effects of Ethnolinguistic Boundaries. We use AMOVA (29) to for-
mally assess the impact of ethnolinguistic boundaries on both
genetic and folktale variability, focusing only on Eurasian pop-
ulations (dataset Eurasia; n = 30) to control for the effect of the
Out of Africa expansion on genetic distance (SI Appendix and
Dataset S1, Tables S1-3.1, S1-3.2, S1-3.3, and S1-3.4). We assign
each population to an ethnolinguistic group (Materials and Meth-
ods, SI Appendix, and Dataset S1, Tables S1-4.1 and S1-4.2). Our
analysis yielded ΦST = 0.036 (P < 0.001) for genetic distance
matrix, whereas ΦST = 0.1 (P < 0.001) for distances based on
folktale distributions. These results confirm the expected differ-

ential impact of intergroup boundaries between genetic and cul-
tural variability and are consistent with previous results obtained
for population structure on the transmission of cultural traits
(23, 30).

We use this evidence to further investigate the separate effects
of linguistic barriers on the flow of genetic and cultural infor-
mation by focusing on two parameters (i.e., intensity and geo-
graphic buffer of the cultural barrier) (details are in Materials
and Methods). We find that the parameter combinations that
resulted in the highest correlation between genetic–geographic
distances (intensity = 0.1; radius = 1,500 km) and between
folktale–geographic distances (intensity = 0.3; radius = 3,000
km) imply that linguistic barriers have a differential impact of
these two kinds of information, and we use this parameter setting
to generate two corrected distance matrices for genetics
(geneticL) (Dataset S1, Table S1-5.1) and folktales (folktaleL)
(Dataset S1, Table S1-5.2), respectively. By using raw and
corrected distance matrices, we define alternative models as
(i) biased cultural diffusion (folktaleL∼ geographic), (ii) demic
diffusion (folktale∼ genetic), and (iii) biased demic diffusion
(folktaleL∼ geneticL).

Assessing Models of Folktale Transmission. We set out to test for
deviations from the null model of cultural diffusion caused by
IBD. We explore the relationship between our genetic, folk-
tale, and geographic distance matrices using SpaceMix (28) (SI
Appendix). We note that, when transformed into pseudospa-
tial coordinates, folktale distances tend to match actual geo-
graphic coordinates better than genetic distances (Fig. 1C and SI
Appendix, Fig. S1-3.1). The role of geography and ethnolinguis-
tic barriers is also confirmed by a NeighborNet (31) based on
folktale distances, showing a broad spatial clustering and prox-
imity/reticulation between demes belonging to the same ethno-
linguistic group (SI Appendix).

We then assess the goodness of fit of all of the alternative mod-
els at a global scale by comparing Pearson’s product–moment
correlation (32), bias-corrected distance correlation (33), and
partial distance correlation (34, 35) (Tables 1 and 2; details are in
Materials and Methods and SI Appendix). It is evident how, after
Bonferroni correction, all alternative models accounting for eth-
nolinguistic boundaries perform better than the models that do
not consider them. With both product–moment correlation coef-
ficient and bias-corrected distance correlation, the best model
is the one representing cultural diffusion with linguistic barri-
ers followed by demic processes constrained by linguistic barri-
ers. With distance correlation, however, the difference between
the two models is smaller than with standard correlation coeffi-
cient. When the dependence between variables is assessed con-
trolling for a third variable through partial distance correlation,
linguistic-biased cultural diffusion remains as good a predictor
of folktale variability as IBD. This phenomenon could be due

Table 1. Variable association at a global level

Model cor P bcdCor P

Folktale ∼ genetic 0.20 <0.001 0.20 <0.001
Folktale ∼ geographic 0.19 <0.001 0.31 <0.001
Genetic ∼ geographic 0.71 <0.001 0.84 <0.001
FolktaleL ∼ geneticL 0.55 <0.001 0.55 <0.001
FolktaleL ∼ geographic 0.64 <0.001 0.57 <0.001
GeneticL ∼ geographic 0.76 <0.001 0.83 <0.001

Comparison between null model of cultural diffusion predicted by IBD
(folktale ∼ geographic) and alternative models [i.e., demic diffusion (folk-
tale ∼ genetic), cultural diffusion biased by linguistic barriers (folktaleL ∼
geographic), and demic diffusion biased by linguistic barriers (folktaleL ∼
geneticL)]. Values refer to Pearson’s product–moment correlation (cor) and
bias-corrected distance correlation (bcdCor) after Bonferroni correction.
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Table 2. Partial distance correlation at a global scale

Model pdCor P

Folktale ∼ genetic, geographic −0.11 1.00
Folktale ∼ geographic, genetic 0.26 <0.001
FolktaleL ∼ geneticL, geographic 0.17 <0.001
FolktaleL ∼ geographic, geneticL 0.25 <0.001

Results of partial distance correlation for null (folktale ∼ geographic,
genetic) and alternative models [i.e., demic diffusion (folktale ∼ genetic,
geographic), cultural diffusion biased by linguistic barriers (folktaleL ∼
geographic, geneticL), and demic diffusion biased by linguistic barriers
(folktaleL∼ geneticL, geographic)] after Bonferroni correction.

to the fact that, at a global scale, correlation between language-
corrected genetic distance and geographic distance is higher (Fig.
1) and lowers the residual signal.

Significant deviations from the null model of cultural diffu-
sion predicted by IBD are further investigated over cumulative
geographic distance by comparing Pearson’s correlation coeffi-
cients (Fig. 2 and SI Appendix, Table S1-7.1). Above 4,000 km,
language-biased cultural diffusion presents with the highest fit
at all bins followed by language-biased demic diffusion. Under
4,000 km, folktale distance exhibits stronger dependence from
genetic distance than from geographic distance. This relation-
ship is particularly visible under 2,000 km, where the effect of
linguistic barriers is the same for genetic and cultural variability.

All results allow us to reject the null model of plain cul-
tural diffusion predicted by IBD and suggest instead that, of
all alternative models, the one involving cultural diffusion mit-
igated by linguistic barriers could be the most plausible one. In
addition, as previously pointed out (Fig. 1), results consistently
confirm that small geographic scale offers a more efficient dis-
entanglement between possible uncoupled effects of genetic and
geographic distances over cultural variables—even after correct-
ing for potential ethnolinguistic barriers.

Uniform Body of Knowledge or Individual Units? Our results show
that, when considering the folktales contained in our dataset
as a uniform corpus, the null model dictated by IBD could
be rejected. Previous results (23), however, have shown that
individual tales or smaller groups of tales may be transmitted
across populations as partially independent evolutionary units.
If a given cultural trait is not transmitted through population
movement and replacement, populations that share it should not
exhibit significantly lower genetic distance than populations that
do not exhibit it (8). To single out folktales that markedly contra-
dict such null hypothesis, we compare the distribution of pairwise
genetic distances corrected for ethnolinguistic boundaries among
populations sharing a given tale against distances of the remain-
ing pairs of populations using the Mann–Whitney–Wilcoxon test.
We focus on 308 folktales that are present in at least five popula-
tions and run two separate tests, the first considering all pairs
of populations (Dataset S1, Table S1-6.1) and a second con-
sidering only those within a conservative geographic range of
6,000 km (Fig. 1A and Dataset S1, Table S1-6.2). After Bonfer-
roni correction, 15 of 308 analyzed folktales (4.9%) (Dataset S1,
Tables S1-7.1 and S1-7.2) present with significantly lower than
expected pairwise genetic distance, hence allowing us to reject
our null hypothesis and suggesting that these tales may indeed
have spread during events of demic diffusion biased by ethnolin-
guistic barriers.

Folktale Dispersal and Focal Areas. For a subset of the analyzed
folktales, we identify focal areas, representing potential areas
of origin and defined as locations that maximize the decay of
a given folktale abundance over geographic distance measured
with Pearson’s correlation coefficient (Dataset S1, Table S1-8.1).

Focal areas were generated for the 19 most widespread folktales,
which follow four main trends (SI Appendix). Some of these tales
possibly started to be diffused mostly via cultural transmission
from Eastern Europe, with subsequent radial diffusion across
Eurasia and Africa [such as Aarne Thompson Uther catalog 155
(ATU155): “The Ungrateful Snake Returned to Captivity” in SI
Appendix, Fig. S1-8-I 1 or ATU313: “The Magic Flight” in Fig.
3], whereas others probably started their journey from Cauca-
sus (SI Appendix, Fig. S1-8-I 6–8). Examples of the latter are
ATU400: “The Man on a Quest for His Lost Wife,” ATU480:
“The Kind and Unkind Girls,” ATU531: “The Clever Horse,”
and ATU560: “The Magic Ring.” Some narrative plots might
have originated in northern Asia—such as the famous “Thum-
bling” (Tom Thumb) (SI Appendix, Fig. S1-8-I 18)—whereas a
last group could have spread from Africa (SI Appendix, Fig. S1-
8-I 17), such as in the case of ATU670: “The Man Who Under-
stands Animal Language.”

Discussion
Using Genetic Evidence to Infer Processes of Cultural Transmission.
Our results resonate with broader questions in cultural evolu-
tionary studies, particularly those concerning the mechanisms of
cultural transmission over time and space. They show that the
use of newly generated, whole-genome sequences offers a unique
opportunity for an unbiased assessment of patterns of cultural
variation in the ethnographic and archaeological records. Genetic
variability has been already interpreted in the past as a direct
proxy of the movement of human groups over time and space, and
as such, it has been used as a potential marker of demic mecha-
nisms (8, 17).

We show the effect of ethnolinguistic barriers on both genetic
and cultural population structure. By introducing an empiri-
cal approach, we find that ethnolinguistic identity has a poten-
tially independent and differential impact on genetic and cultural
information. More specifically, our results suggest that linguistic
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Fig. 2. Comparison of the null model of cultural diffusion dictated
by IBD (folktale∼geographic; light blue) against all alternative models:
demic diffusion (folktale∼genetic; red), language-biased cultural diffu-
sion (folktaleL∼geographic; purple), and language-biased demic diffusion
(folktaleL∼geneticL; yellow) over cumulative geographic distance. Prod-
uct–moment correlation coefficients are calculated at each geographic bin
(size = 2,000 km), with original distance matrices up to 12,000 km.
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Fig. 3. Possible focal area and dispersion pattern for tale ATU313 “The
Magic Flight,” one the most popular folktales in this dataset, which may
have been additionally spread through population movement and replace-
ment. It is interesting to note how this tale reached locations that are far
from its putative origin (such as Japan and southeastern Africa), whereas it
was not retained by many populations located in between (gray dots).

barriers may be twice as effective on the diffusion of cultural
traits than on population movement and that the decay over
geographic distance of such effect is almost two times slower
for culture than for genetic information. Nevertheless, this work
very explicitly generates a cautionary tale concerning the use
of genomic evidence for investigating such events at a cross-
continental or global scale, where geographic clines in genetic
variability are the result of different processes that can hardly be
disentangled and that may present with considerable temporal
mismatch with more recent cultural processes.

Cultural Evolutionary Mechanisms of Folktale Transmission. Folk-
tales are a prime example of a universal form of cultural expres-
sion linked to various vectors of propagation over generations and
across geographic and ethnolinguistic barriers that allows us to
address questions of cultural evolutionary processes at a cross-
cultural and -continental scale. Our results provide insights on the
processes driving the spread of folkloric narratives that go beyond
previous studies that were limited to a single language family (3).

By correcting for the presence of ethnolinguistic barriers, we
find that the null model of cultural diffusion predicted by IBD
alone cannot explain the observed distribution of folktales across
Eurasia. Instead, beyond ∼ 4,000 km, cultural diffusion biased
by linguistic barriers exhibits the highest correlation at all geo-
graphic bins. At small geographic bins (< 4,000 km), popula-
tion movements and linguistic barriers may be more relevant
than geographic proximity, pointing once again at the possi-
ble importance of small-scale processes of cultural transmis-
sion for testing more specific hypotheses when using genetic
evidence. In addition, processes other than simple cultural diffu-
sion may be more relevant for a smaller group of tales shared by
pairs of populations that are genetically closer than populations
not exhibiting those tales. Looking for smaller packages of tales
or individual tales and their variants can be useful to shed light
on the formation process of this vast body of popular knowledge.
The long-range patterns detected by our analyses may comple-

ment this picture by suggesting a more ancient origin of some of
these folktales (SI Appendix) (36–39). On a broader level, these
results can be used in the future to infer directional trends of cul-
tural dispersal as well as to test for the emergence of systematic
social biases [such as prestige bias, conformism/anticonformism,
heterophily, and content-dependent biases (5, 23, 30)] or cultural
barriers different from linguistic ones, which have a chronology
that may be independently ascertained.

Materials and Methods
Dataset Description. Folktale data were sourced from the ATU (27). This
dataset comprises animal tales (ATU1–299) and tales of magic (ATU300–
749). Of 198 societies in which the tales were recorded, 73 matched avail-
able genetic data (Dataset S1, Table S1-1). Of these groups, 33 populations
exhibiting at least five folktales were selected (Fig. 1B and Dataset S1, Table
S1-2.2). Each population is described by a string listing the presence (one) or
absence (zero) of any of the included 596 folktales.

Genetic, Folktale, and Geographic Distances. Genetic distances were esti-
mated by the average pairwise distances between two genomes, one from
each population, including both coding and noncoding regions to avoid
ascertainment biases. Genetic distance for (i, j) pairs of populations repre-
sented by more than one genome was calculated as the average of all pos-
sible (i, j) pairs of genomes. As a consequence, the diagonal of the genetic
distance matrix was not constrained to be zero (Dataset S1, Table S1-3.2).
Folktale distance between population pairs was calculated as asymmetric
Jaccard distance (40) (Dataset S1, Table S1-3.3). Geographic distance was cal-
culated as pairwise great circle distance with a waypoint located in the Sinai
Peninsula to constrain movement of African demes [through the package
gdistance in R (41)]. Coordinates (longitude and latitude in decimal degrees)
(Dataset S1, Tables S1-9.1 and S1-9.2) identify the assumed center of the area
occupied by a given folkloric tradition as defined by the ATU index.

Transformation of Dissimilarities into Euclidean Distances. To perform bias-
corrected and partial distance correlation, folktale, genetic, and geographic
distances were transformed into their exact Euclidean representations (33,
42). The original folktale and genetic distance matrices were scaled through
classic multidimensional scaling using the function cmdscale in R and follow-
ing the procedure for exact representation (34). Euclidean distances were
computed from the obtained number of descriptors (n – 2) using the func-
tion dist in R (Dataset S1, Tables S1-10.1 and S1-10.2). Euclidean representa-
tion of geographic distance (Dataset S1, Table S1-10.3) was instead obtained
by reprojecting the original set of coordinates on a plane using two-point
equidistant projection through the functions tpeqd in the package map-
misc (43) and spTransform in the package sp in R (44, 45). Euclidean distance
between the new set of coordinates was computed using the function rdist
in the package fields in R (46).

AMOVA. To implement AMOVA (29) in our analysis, each population
was assigned to an ethnolinguistic group derived from Ethnologue
(https://www.ethnologue.com; Dataset S1, Table S1-4.1), and we used the
function amova in the package pegas (47) in R. Significance values are
obtained through permutation (1,000 iterations).

Variable and Model Comparison. The relationship between original and
biased folktale, genetic, and geographic pairwise distance matrices was
quantitatively assessed at global scale and cumulative geographic scales.
Measures were obtained through (i) Pearson’s product–moment correlation
coefficient using the function cor.test in R, (ii) bias-corrected distance corre-
lation (33) using the function dcor.ttest in the package energy in R (48), and
(iii) partial distance correlation using the function pdcor.test in the package
energy in R. In parallel, SpaceMix (28) was used to compute folktale and
genetic pseudocoordinates, which were compared with actual geographic
coordinates to explore inferred processes of admixture.

Estimating the Effect of Ethnolinguistic Barriers on Genetic and Folktale Dis-
tance. We assumed that, if existent, a linguistic barrier would act on pairs
of populations that belong to different linguistic families and live within
a d geographic distance and artificially increase the actual genetic (Dgen)
or folktale (Dfolk) distance by an intensity factor f . We also assumed that
parameters d and f may be different when looking at genetic (dG, fG) and
folktale (dF , fF ) distances. We assessed the correlation between geographic
and genetic or folktale distances at increasing spatial bins before and after
correcting for putative linguistic barriers. Particularly, we chose as best pairs
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of (dG, fG) and (dF , fF ) those that maximized the above-mentioned correla-
tions. Notably, fG = 0 or fF = 0 (i.e., absence of linguistic barriers) had an
equal chance of being picked up as the best values for our parameters. We
instead reported (1,500, 0.1) and (3,000, 0.3) as best pairs of genetic and
folktale parameters, respectively. To obtain unbiased genetic (Dgen′) and
folktale (Dfolk′) distances, we, therefore, corrected for the effect of lin-
guistic barriers, so that, for populations (i, j), Dgen′ ij = Dgenij × (1 − fG)
if dij 6 dG and Dfolk′ij = Dfolkij

∗(1− fF ) if dij 6 dF .

Data Availability and Codes. R scripts and related commands used to gener-
ate all of the results described in the paper are available at doi.org/10.5281/

zenodo.821360. Folktale and geographic data as well as genetic distances
are also available in Dataset S1. Genetic data used to run SpaceMix are taken
from ref. 24 (www.ebc.ee/free data).
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3	

1	Extended	dataset	description	1	

Folktale	 data	were	 sourced	 from	 the	Aarne	 Thompson	Uther	 (ATU)	 Index	 -	 a	 catalogue	 of	 over	 2,000	2	

distinct	 “international	 tale	 types”	 distributed	 among	more	 than	 200	 cultures	 [22].	 Each	 international	3	

type	 represents	 an	 independent,	 self-contained	 storyline	 comprising	 a	 combination	 of	 motifs	 (e.g.	4	

specific	 events,	 characters,	 or	 artefacts)	 that	 is	 recognizably	 stable	 across	 cultures.	We	 constructed	 a	5	

dataset	recording	the	cross-cultural	distributions	of	two	groups	of	folktales:	'Animal	Tales'	(ATU	1	–	299),	6	

which	 feature	non-human	protagonists,	 as	 typified	by	Aesop's	 fables,	 and	 'Tales	of	Magic'	 (ATU	300	–	7	

749),	which	concern	beings	or	objects	with	supernatural	powers,	such	as	fairies,	witches	or	magic	rings	8	

[22].	We	focused	on	these	two	genres	because	they	are	the	most	richly	documented	and	most	culturally	9	

widespread	groups	of	tales	in	the	ATU	Index.	10	

73	of	the	198	societies	 in	which	the	tales	were	recorded	could	be	matched	with	populations	for	which	11	

whole	genome	sequences	were	available	(Table	S2-I).	Of	these,	33	(DatasetMAIN)	were	selected	based	on	12	

a	threshold	of	minimum	richness	(i.e.	those	exhibiting	at	least	5	folktales;	Table	S2-II)	and	the	presence	13	

of	viable	genetic	proxies.	Each	population	was	univocally	described	by	a	string	listing	the	presence	(1)	or	14	

absence	(0)	of	any	of	the	included	596	folktales	(Table	S2-II).	15	

In	 addition	 to	 DatasetMAIN	 we	 generate	 an	 additional	 subset	 which	 is	 functional	 to	 testing	 explicit	16	

hypotheses,	 i.e.	 DatasetEURASIA	 (N=30)	 which	 does	 not	 include	 the	 3	 African	 population	 present	 in	17	

DatasetMAIN	(Table	S1-II,	i.e.	Congolese,	Tanzanian,	and	West	African); 18	

2	Distances	19	

2.1	SNP	filtering	20	

The	whole	genome	sequences	used	in	this	study	were	generated,	QCed	and	phased	as	part	of	a	broader	21	

study	[21].	The	bulk	of	~39M	SNPs	were	used	to	calculate	the	statistics	described	below.	22	

	23	



	
	

4	

2.2	Genetic,	Folktale,	Ethnolinguistic	and	Geographic	distances	1	

2.2.1	Genetic	distance	2	

Genetic	distances	were	estimated	by	the	average	pairwise	distances	between	two	genomes,	one	 from	3	

each	population.	Genetic	distance	 for	 (i,j)	pairs	of	populations	 represented	by	more	 than	one	genome	4	

each	was	calculated	as	the	average	of	all	possible	(i,j)	pairs	of	genomes.	As	a	consequence	the	diagonal	5	

of	the	genetic	distance	matrix	was	not	constrained	to	be	zero	(Table	S2-3.1-3).	6	

2.2.2	Folktale	distance	7	

Since	the	original	dataset	(Table	S1-I)	and	DatasetMAIN	(Table	S1-II)	comprise	binary	evidence	of	presence	8	

(1)	or	absence	 (0)	of	 a	 given	 folktale	 in	a	 set	of	worldwide	populations,	we	calculate	 folktale	distance	9	

between	populations	as	an	asymmetric	pairwise	Jaccard	distance2.	Symmetric	Jaccard	distance	between	10	

population	A	and	population	B	is	calculated	as		11	

	12	

	13	

in	 other	 words	 as	 the	 ratio	 between	 the	 number	 of	 differences	 and	 the	 sum	 of	 similarities	 and	14	

differences	 which	 can	 be	 identified	 by	 comparing	 A	 and	 B.	 In	 the	 present	 work,	 we	 assume	 Xij	 =	 0	15	

(absence	 of	 the	 jth	 tale	 in	 the	 ith	 population	 of	 dataset	X)	 to	 be	 the	 ancestral	 state.	 Accordingly,	we	16	

adopt	 an	 asymmetrical	 coefficient	 that	 does	 not	 consider	 absence	 of	 the	 jth	 tale	 in	 two	 sampled	17	

populations	 i	and	k	(Xij+Xkj	=	0)	as	an	instance	of	homology	(for	the	substantial	 limits	posed	by	double	18	

zeros	to	inference	in	ecology	and	related	disciplines	please	refer	to	Legendre	and	Legendre3).		19	

Therefore,	 in	 a	 dataset	X	 formed	by	n	 rows	 each	 representing	 a	 population	univocally	 described	by	 a	20	

string	of	presence	(1)/absence	(0)	values	of	J	folktales,	we	eliminate	double	zeros	and	calculate	pairwise	21	

folktale	distance	(F𝜹)	between	population	Xi	and	population	Xk	as		22	

		23	

where	square	Iverson	brackets	equal	1	if	their	internal	condition	is	satisfied	and	0	if	it	is	not	satisfied.	The	24	

resulting	value	 is	 the	 ratio	between	the	number	of	 inter-population	differences,	and	 the	sum	of	 inter-25	

population	differences	and	similarities	based	on	the	presence	of	the	jth	folktale	in	both	populations.	26	



	
	

5	

2.2.3	Geographic	distance	1	

Geographic	distances	were	calculated	as	pairwise	Great	Circle	Distance	using	the	package	gdistance	in	R	2	

[42]	 and	 by	 constraining	 the	 hypothesised	movement	 of	 people	 through	 one	waypoint	 located	 in	 the	3	

Sinai	Peninsula.	Coordinates	(longitude	and	latitude	in	decimal	degrees)	expressing	the	location	of	each	4	

population	comprised	in	Table	S2-5	identify	the	assumed	centre	of	the	area	occupied	by	a	given	folkloric	5	

tradition	as	defined	by	ATU	index.	6	

2.2.4	Euclidean	distances	7	

In	 order	 to	 perform	 bias	 corrected	 and	 partial	 distance	 Correlation,	 folktale,	 genetic,	 and	 geographic	8	

distances	 were	 transformed	 into	 their	 exact	 Euclidean	 representations	 (as	 indicated	 in	 Szekely	 et	 al	9	

2007,	 2013).	 The	 original	 folktale	 and	 genetic	 distance	 matrices	 were	 scaled	 through	 Classic	10	

Multidimensional	 Scaling	 using	 the	 function	 cmdscale	 in	 R	 and	 following	 the	 procedure	 for	 exact	11	

representation	 presented	 by	 Szekely	 et	 al.	 (2013a).	 Euclidean	 distances	 were	 computed	 from	 the	12	

obtained	 n-2	 number	 of	 descriptors	 using	 the	 function	 dist	 in	 R	 with	 method	 set	 to	 “euclidean”.	13	

Euclidean	representation	of	geographic	distance	was	instead	obtained	by	reprojecting	the	original	set	of	14	

coordinates	on	a	plane	using	two-point	equidistant	projection	through	the	function	spTransform	in	the	15	

package	sp	in	R	(Pebesma	and	Bivand	2005;	Bivand	et	al.	2013)	.	Actual	Euclidean	distance	between	the	16	

new	set	of	coordinates	was	computed	using	the	function	radish	in	the	package	fields	in	R	(Nychka	et	al.	17	

2016).	18	

	19	

3	SpaceMix		20	

We	performed	two	independent	SpaceMix		(Bradburd	et	al.	2013)	analyses	aimed	at	retrieving	the	21	

“genetic”	and	the	“folktale”	spatial	positions	of	our	Eurasian	samples.	For	the	genetic	run,	we	used	the	22	

126,554	SNPs	of	chromosome	22	that	were	variable	in	at	least	one	of	30	samples	each	representing	one	23	

of	our	studied	populations.	Given	the	high	number	of	available	markers	we	deemed	a	single	24	

chromosome	to	be	sufficient	to	yield	reliable	results.	25	

The	geographic	information	was	obtained	from	Table	S2-5.1,	the	genetic	information	was	inputted	using	26	

the	count/total	option	and	Spacemix	was	used	with	the	default	parameters:	27	

run.spacemix.analysis(n.fast.reps=10,	fast.MCMC.ngen=1e5,	fast.model.option="target",	28	

long.model.option="source_and_target",	data.type="counts",	sample.frequencies	=	NULL,	29	
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mean.sample.sizes	=	NULL,	counts	=	count,	sample.sizes	=	total,	sample.covariance	=	NULL,	1	

target.spatial.prior.scale	=	NULL,	source.spatial.prior.scale	=	NULL,	spatial.prior.X.coordinates=coord[,1],	2	

spatial.prior.Y.coordinates=coord[,2],	round.earth=FALSE,	long.run.initial.parameters	=	NULL,	3	

k=nrow(count),	loci=ncol(count),	ngen=1e6,	printfreq=1e2,	samplefreq=1e3,	mixing.diagn.freq	=	50,	4	

savefreq=1e5,	directory	=	NULL,	prefix	=	"OurPrefix")	5	

This	yielded	a	“geno-geographic”	positioning	for	each	of	the	30	samples.	6	

The	same	procedure	was	replicated	using	this	time	“folktale”	information	as	input	data.	Particularly	we	7	

generated	a	pseudo-genetic	file	where	each	population	was	typed	as	a	single	individual	and	the	8	

presence	of	a	given	folktale	was	registered	as	an	homozygous	trait.	9	

The	“geno-geographic”	and	“folk-geographic”	coordinates	hence	generated	were	compared	with	the	10	

actual	geographic	coordinates,	denoting	a	tendency	for	the	folk-geographic	coordinates	to	approximate	11	

better	than	the	geno-geographic	ones	the	actual	geographic	locations	of	the	sampled	populations	12	

(Figure	S1-3.1).	13	

	14	

Figure	S1-3.1	SpaceMix	analyses	for	each	of	the	Eurasian	populations	showing	the	geographic	(dot),	15	
geno-geographic	(G)	and	folk-geographic	(F)	coordinates	joined	by	white	segments.	16	

	17	

	18	

	19	

	20	
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4.	NeighborNet	1	

A	Neighbornet	 analysis	was	 also	 carried	out	 to	 further	 explore	 the	 impact	of	 geography	and	 linguistic	2	

ancestry	on	the	distribution	of	folktales	in	the	present	dataset.	The	analysis	yielded	the	following	graph	3	

(Fig.	 S1-4.1),	 exhibiting	 a	 certain	 degree	 of	 spatial	 clustering	 in	 addition	 to	 proximity	 and	 reticulation	4	

among	 linguistic	 close	 relatives	 (e.g.	 within	 the	 Indo-European	 family,	 the	 Semitic	 family,	 and	 the	5	

Mongolian	family).	Overall,	the	spatial	structure	in	the	dataset	seems	to	be	stronger	(e.g.	the	position	of	6	

Hungarian,	 Japanese/Chinese).	 Some	 language	 families,	 notably	 Turkic,	 Uralic	 and	 Caucasian,	 are	7	

scattered	across	the	network.	The	degree	of	reticulation	is	quite	high,	as	testified	by	the	relevant	quartet	8	

statistics	(delta	score	=	0.317;	Q-residual	score	=	0.002335),	suggesting	that	cultural	admixture	processes	9	

between	demes	may	have	an	important	role.	10	

Fig.	 S1-4.1.	Neighbornet	 graph	 based	 on	 folktale	 distance.Linguistic	 color	 code:	 red	 =	 Turkic;	 blue	 =	11	

Indo-European;	pink	=	Sino-Tibetan;	purple	=	Caucasian;	turquoise	=	Eskimo-Aleut;	orange	=	Semitic;	12	

light	green	=	Uralic;	dark	green	=	Japonic,	brown	=	Mongolian;	black	=	Austro-asiatic	13	

	14	

		15	
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5.	AMOVA	1	

We	use	Analysis	of	Molecular	Variation	(AMOVA;	Excoffier	et	al.	1992)	to	 formally	asses	the	 impact	of	2	

ethnolinguistic	boundaries	on	both	genetic	and	cultural	(folktale)	variability.	To	do	this,	we	assigned	each	3	

population	to	an	ethnolinguistic	group	(derived	from	Ethnologue;	SI	table	S2-9.1),	and	used	the	function	4	

amova	 in	 the	 package	 pegas	 in	 R	 to	 run	 the	 analysis	 (Paradis	 2010).	 AMOVA	 is	 commonly	 used	 in	5	

population	genetics	to	assess	the	degree	of	population	structure	in	a	metapopulation.	In	other	words,	it	6	

measures	the	degree	of	variability	existing	between	predetermined	groups	as	opposed	to	the	amount	of	7	

variability	 observed	 within	 each	 group.	 AMOVA	 returns	 a	 summary	 statistic	 (PhiST)	 obtained	 by	8	

computing	 the	 ratio	 between	 intergroup	 diversity	 estimate	 and	 total	 diversity	 in	 the	metapopulation.	9	

Although	it	is	derived	from	the	more	general	class	of	FST	measures,	PhiST		evaluates	symmetric	distance	10	

matrices	while	FST	is	based	on	correlations	between	individual	variant	frequencies.	Such	measures	have	11	

already	 been	 successfully	 adopted	 to	 investigate	 co-evolutionary	 patterns	 in	 genetic	 and	 cultural	12	

datasets	(Bell	et	al.	2009;	Rseszutek	et	al.	2012),	in	cultural	datasets	alone	(Shennan	et	al	2015),	and	in	13	

one	 case	 on	 the	 distribution	 of	 folktale	 variants	 in	 Europe	 (Ross	 et	 al.	 2013).	 Results	 of	 these	 works	14	

consistently	 show	 that	 average	 intergroup	 cultural	 dissimilarity	 is	 stronger	 than	 genetic	 dissimilarity	15	

measured	on	the	same	set	of	demes,	while	PhiST	values	obtained	for	cultural	markers	are	usually	 in	a	16	

range	comprised	between	0.02	(musical	diversity;	Rseszutek	et	al.	2012)	and	higher	levels	for	variants	of	17	

individual	 folktales	 (PhiST	 =0.09;	 Ross	 et	 al.	 2013),	 or	 personal	 ornaments	 (PhiST	 =0.109)	 and	 pottery	18	

(PhiST	=0.134)	in	Neolithic	Europe	(Shennan	et	al	2015).		Our	results	confirm	this	differential	impact	on	19	

genetic	variability	on	the	one	hand,	and	cultural	variability	on	the	other.	20	

	21	

 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
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6.	Bias-corrected	distance	correlation	and	partial	distance	correlation	1	

 2	
Distance	correlation	 is	a	measure	of	statistical	dependence	between	two	variables	which	 is	specifically	3	

suited	for	testing	such	hypothesis	on	pairs	of	symmetric	distance	matrices.	 Its	value	equals	zero	 if	and	4	

only	 if	 the	two	variables	are	statistically	 independent	(Székely	et	al.	2007).	 In	addition:	a)	 the	resulting	5	

statistics	are	not	bound	to	 linear	models.	On	the	contrary,	they	are	sensitive	to	all	types	of	dependent	6	

relationships,	including	nonlinear	and	non	monotone	ones	(Székely	et	al	2007);	b)	it	is	not	prone	to	the	7	

same	problems	 raised	 for	 standard	 and	partial	Mantel	 tests	 (Guillot and Rousset 2013);	 and	 c)	 it	 is	8	

usually	 preferred	 to	 other	measures	 of	 nonlinear	 association	 when	 small	 or	 practical	 sample	 size	 are	9	

concerned	(Gorfin	et	al	2011).	10	

Given	two	distance	or	dissimilarity	matrices,	standard	distance	correlation	performs	double	centering	of	11	

each	matrix	 by	 subtracting	 row	 and	 column	 average	 to	 rows	 and	 columns	 of	 the	 original	matrix,	 and	12	

adding	the	grand	mean	of	the	distance	matrix	to	the	results,	so	that	all	columns	and	rows	of	the	resulting	13	

matrices	sum	to	zero.	Distance	correlation	between	two	such	scaled	matrices	-	as	in	Pearson’s	Product-14	

moment	correlation	coefficient	 is	 computed	by	dividing	 the	distance	Covariance	by	 the	product	of	 the	15	

respective	 distance	 standard	 deviations.	 Distance	 Covariance	 is	 obtained	 by	 computing	 the	 summed	16	

cross-product	 between	 the	 two	 double-centered	matrices	 and	 averaging	 it	 over	 squared	 sample	 size.	17	

Distance	 correlation	 is	 therefore	not	 the	 correlation	between	original	 distances.	 It	 is	 instead	based	on	18	

cross-products	between	scaled	moment	obtained	by	double-cantering	the	original	matrices.		19	

In	the	present	paper,	we	perform	Bias-Corrected	Distance	Correlation	(Szekely	and	Rizzo	2013)	suited	for	20	

bigger	sample	size	(in	the	present	study	we	have	435	observation	when	all	pairs	are	considered	over	30	21	

populations,	which	is	exactly	the	example	size	provided	by	the	authors	and	developers	of	the	method),	22	

This	method	 corrects	 for	potential	 limitations	of	original	distance	Covariance	and	distance	Correlation	23	

measures	(Székely	et	al.	2007)	when	dimension	tends	to	infinity,	and	is	based	on	an	unbiased	estimator	24	

or	 the	squared	distance	population	covariance.	A	suited	t-test	of	 independence	 is	offered.	 In	addition,	25	

we	perform	Partial	distance	correlation	(Szekely	et	al	2013a)	to	assess	the	 impact	of	one	variable	over	26	

another,	while	controlling	for	the	effect	of	a	third	variable.	For	calculating	partial	distance	correlation	the	27	

standard	 double-centering	 used	 in	 standard	 and	 bias-corrected	 distance	 correlation	 is	 replaced	 by	 a	28	

different	 centering	 technique	 named	 U-centering	 and	 based	 on	 the	 demonstration	 that	 such	29	

transformed	 distance	 and	 dissimilarity	 matrices	 have	 a	 corresponding	 U-centered	 Euclidean	30	

representation	 in	Hilbert	 space	 (a	generalization	of	Euclidean	plane	with	a	 finite	or	 infinite	number	of	31	
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dimensions;	Szekely	et	al	2013a).	Simulation	studies	confirm	that	the	joint	significance	test	controls	type	1	

I	error	rate	at	 its	nominal	 level,	and	outperforms	partial	correlation	and	partial	Mantel	test	 in	terms	of	2	

power	(Szekely	et	al	2013a).	3	

	4	

7.	 Exploring	association	between	variables	over	 cumulative	 geographic	5	

distance	6	

Table	 S1-7.1	 Model	 comparison	 over	 cumulative	 geographic	 distance.	 Results	 report	 Pearson’s	7	

product-moment	correlation	coefficients	plotted	in	Fig.2	and	obtained	with		original	distance	matrices.	8	

	9	

	10	

	11	

	12	

	13	

	14	

	15	

	16	

	17	

Table 1: Model selection at cumulative geographic distances

Km N Best AIC �

Geno

�

Geo

L

Geno

L

Geo

w

Geno

w

Geo

Main 528 All -2389.8 4.2 17.5 0.12 0.00016 0.99 0.01

Eurasia 435 All -1895.48 0.09 2.29 0.96 0.32 0.75 0.25

2000 115 Geno -438.94 0.00 22.61 1.00 0.00 1.00 0.00

4000 249 All -1052.72 5.90 21.82 0.05 0.00 1.00 0.00

6000 343 All -1484.20 2.40 4.70 0.30 0.09 0.76 0.24

8000 412 All -1798.36 1.66 1.86 0.44 0.39 0.53 0.47

10000 435 Geno -1890.30 0.00 2.40 1.00 0.30 0.77 0.23

12000 435 All -1895.48 0.09 2.29 0.96 0.32 0.75 0.25

pdcor p

folktale˜genetic+geographic -0.11 1.00

folktale˜geographic+genetic 0.26 0.00

folktaleL˜geneticL+geographic 0.17 0.00

folkL˜geo+genoL 0.25 0.00

N bindist r.folk p.folk r.folk(Lw) p.folk(Lw) r.folk p.folk r.folk(Lw) p.folk(Lw)

geo geo geo geo geno geno geno(Lw) geno(Lw)

1 114 2000 0.15 0.06 0.15 0.06 0.27 <0.001 0.26 <0.001

2 245 4000 0.36 <0.001 0.64 <0.001 0.16 0.01 0.28 <0.001

3 339 6000 0.31 <0.001 0.70 <0.001 0.13 <0.001 0.40 <0.001

4 411 8000 0.28 <0.001 0.69 <0.001 0.23 <0.001 0.48 <0.001

5 433 10000 0.24 <0.001 0.62 <0.001 0.17 <0.001 0.52 <0.001

6 435 12000 0.31 <0.001 0.57 <0.001 0.20 <0.001 0.55 <0.001

N bindist r.folk p.folk r.folk(Lw) p.folk(Lw) r.folk p.folk r.folk(Lw) p.folk(Lw)

geo geo geo geo geno geno geno(Lw) geno(Lw)

115 2000 0.16 0.09 0.21 0.03 0.45 <0.001 0.40 <0.001

249 4000 0.24 <0.001 0.58 <0.001 0.34 <0.001 0.40 <0.001

343 6000 0.22 <0.001 0.68 <0.001 0.23 <0.001 0.51 <0.001

412 8000 0.22 <0.001 0.67 <0.001 0.22 <0.001 0.55 <0.001

434 10000 0.19 <0.001 0.64 <0.001 0.20 <0.001 0.55 <0.001

435 12000 0.19 <0.001 0.64 <0.001 0.20 <0.001 0.55 <0.001

3
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8.	Diffusion	of	most	popular	tales	and	estimation	of	possible	focal	points	1	

from	spatial	distribution	2	

 3	

We	identify	19	“most	popular”	tales,	 i.e.	 folktales	that	are	present	 in	at	 least	30	populations	out	of	60	4	

Old	World	populations	available	in	the	original	presence/absence	matrix	(Table	S2-10,	S2-11),	which	are	5	

briefly	summarized	below:	6	

	7	

o ATU	155	‘The	Ungrateful	Snake	Returned	to	Captivity’:	A	snake	(or	another	dangerous	animal)	8	

attacks	a	man	who	rescues	it,	and	is	punished	by	other	animals.	9	

o ATU	300	‘The	Dragon	Slayer’:	A	man	rescues	a	beautiful	maiden	from	a	dragon/monster,	often	10	

with	the	help	of	his	dogs.	Later,	he	exposes	an	imposter	who	claims	credit	for	the	deed.		11	

o ATU	301	‘The	Three	Stolen	Princesses’:	A	man	rescues	three	women	from	a	pit.	His	companions	12	

betray	him	by	leaving	him	in	the	pit	and	stealing	the	girls.	With	the	aid	of	a	spirit	the	hero	flies	13	

up	and	exposes	his	companions,	marrying	the	youngest	girl.	14	

o ATU	303	‘The	Twins,	Or	Blood	Brothers’:	A	hero	rescues	a	woman	and	marries	her,	but	is	later	15	

bewitched.	His	twin	brother	sets	out	to	find	him,	and	is	mistaken	by	the	woman	for	her	husband.	16	

The	twin	releases	his	brother,	who	kills	him	in	a	jealous	rage,	mistakenly	believing	him	to	have	17	

seduced	his	wife.	The	twin	is	later	resuscitated.	18	

o ATU	 313	 ‘The	Magic	 Flight’:	 A	 man	 elopes	 with	 the	 daughter	 of	 a	 demon	 or	 king.	 She	 uses	19	

magical	objects	to	obstruct	their	pursuers	and	they	escape.	20	

o ATU	 314	 ‘Goldener’:	 A	 golden-haired	 man	 marries	 the	 king’s	 daughter.	 He	 is	 mocked	 by	 his	21	

brothers-in-law,	but	succeeds	in	completing	heroic	deeds	where	they	fail	and	is	made	the	heir.	22	

o ATU	325	‘The	Magician	and	his	Apprentice’:	A	boy	is	given	to	a	magician	to	be	his	apprentice.	23	

The	boy	learns	the	art	of	sorcery	and	frees	himself	from	his	master	after	a	battle	in	which	they	24	

transform	into	a	succession	of	different	kinds	of	animals.	25	

o ATU	400	‘The	Man	on	a	Quest	for	his	Lost	Wife’:	A	miscellaneous	group	of	stories	concerning	a	26	

man	who	 is	 separated	 from	his	wife	 during	 an	 adventure.	When	 he	 finds	 her	 she	 is	 about	 to	27	

marry	another	man,	but	he	proves	his	identity	to	her	and	they	are	reconciled.	28	
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o ATU	403	‘The	Black	and	the	White	Bride’:	A	girl	is	to	marry	the	king,	but	her	stepmother	tries	to	1	

kill	 her	 and	 replace	 her	 with	 her	 own	 daughter.	 The	 girl	 proves	 her	 identity	 to	 the	 king	 and	2	

exposes	her	stepsister	as	an	imposter.	3	

o ATU	 480	 ‘The	 Kind	 and	 Unkind	 Girls’:	 A	 girl	 goes	 on	 a	 journey	 and	 is	 kind	 to	 those	 she	4	

encounters.	She	is	rewarded.	Her	stepmother	sends	her	own	daughter	on	the	same	journey	but	5	

she	is	unkind	and	gets	punished.	6	

o ATU	531	‘The	Clever	Horse’:	A	miscellaneous	group	of	stories	in	which	a	young	man	is	helped	to	7	

complete	some	near-impossible	tasks	by	a	talking	horse	and	marries	a	princess.	8	

o ATU	550	‘Bird,	Horse	and	Princess’:	Three	brothers	are	sent	on	a	quest	by	their	father	to	catch	a	9	

magic	bird.	The	youngest	brother	succeeds	but	is	betrayed	by	the	other	two	who	try	to	claim	the	10	

prize.	With	the	help	of	a	magical	animal	the	hero	exposes	his	brothers.	11	

o ATU	554	 ‘The	Grateful	Animals’:	A	man	helps	a	 series	of	 animals,	who	 reciprocate	by	helping	12	

him	to	complete	a	series	of	near-impossible	tasks.	13	

o ATU	560	 ‘The	Magic	 Ring’:	 A	 boy	 acquires	 a	magic	 ring	 that	 grants	 him	wishes.	 He	marries	 a	14	

princess,	who	steals	the	ring	to	elope	with	her	 lover.	The	boy	recovers	a	ring	and	punishes	his	15	

faithless	wife	and	her	lover.	16	

o ATU	 563	 ‘The	 Table,	 the	 Donkey	 and	 the	 Stick’:	 A	 man	 acquires	 magical	 objects	 from	 a	17	

supernatural	 being.	 He	 is	 cheated	 out	 of	 them	 and	 given	 plain	 objects	 in	 their	 place,	 but	18	

manages	to	recover	his	possessions	and	punish	the	cheat.	19	

o ATU	613	‘The	Two	Travellers’:	After	 losing	an	argument	with	his	companion,	a	man	is	blinded.	20	

He	 learns	 the	 secrets	 of	 birds	 and	 recovers	 his	 sight	 as	 well	 as	 gaining	 new	 powers.	 His	21	

companion	imitates	him	and	is	punished	by	the	birds.	22	

o ATU	670	‘The	Man	Who	Understands	Animal	Languages’:	A	snake	teaches	a	man	the	languages	23	

of	animals	on	condition	he	keeps	it	a	secret.	The	man’s	wife	nags	him	to	teach	her	but	he	refuses	24	

after	being	warned	of	the	consequences	by	a	male	animal	(usually	a	rooster).	25	

o ATU	700	 ‘Thumbling’:	A	couple	wish	 for	a	child	and	are	given	a	 tiny	boy	through	supernatural	26	

means.	The	boy	is	lost	and	goes	on	a	series	of	adventures	until	he	is	reunited	with	his	parents.	27	

o ATU	707	‘The	Three	Golden	Children’:	A	woman	marries	a	king	and	gives	birth	to	three	children,	28	

who	are	stolen	by	her	jealous	sisters.	When	they	grow	up	the	children	go	on	a	quest	to	find	their	29	

parents	and	eventually	expose	the	sisters.	30	
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One	 possible	 explanation	 for	 the	 wide	 dispersion	 of	 these	 tales	 is	 that	 they	 spread	 through	 the	1	

dissemination	of	written	 texts,	which	would	allow	 them	to	 travel	much	 further	and	 in	a	much	shorter	2	

period	 than	 would	 be	 possible	 solely	 through	 the	 vectors	 of	 human	 dispersal	 and	 traditional	 oral	3	

transmission.	Such	a	process	would	most	likely	have	coincided	with	the	emergence	of	the	fairy	tale	as	a	4	

popular	 literary	genre	 in	the	sixteenth	and	seventeenth	centuries	 (Bottigheimer	2014).	Although	many	5	

folktales	were	incorporated	into	literary	works	prior	to	this	period	(for	example,	in	medieval	romances),	6	

the	development	of	new,	 cheap	printing	 technologies	 together	with	 the	growth	of	 international	 trade	7	

networks	and	European	colonialism	would	have	allowed	tales	to	circulate	to	much	wider	audiences	than	8	

was	previously	possible	(ibid.).	9	

In	fact,	seven	of	the	tales	listed	above	were	published	in	major	fairy	tale	collections	during	this	period,	10	

including	Giovanni	 Francesco	 Straparola's	 Le	Piacevoli	Notti	 in	 1550-55	 (ATU	314,	ATU	325,	ATU	670),	11	

Giambattista	 Basile's	 Lo	 cunto	 de	 li	 cunti	 in	 1634	 (ATU	 301,	 ATU	 480,	 ATU	 560),	 Charles	 Perrault's	12	

Histoires	ou	contes	du	temps	passé	in	1697	(ATU	480,	ATU	700).	However,	one	obvious	question	raised	13	

by	 the	 hypothesis	 that	 these	 tales	 spread	 via	 textual	 transmission	 is	why	 the	 other	 stories	 contained	14	

within	 these	 collections	 did	 not	 achieve	 similarly	 wide	 cross-cultural	 distributions.	 Secondly,	 while	15	

literary	versions	have	undoubtedly	made	a	major	contribution	to	the	modern	forms	of	these	tales,	there	16	

is	 compelling	 evidence	 that	 they	 were	 derived	 from	 already	 well-established	 and	 widespread	 oral	17	

traditions,	 rather	 than	the	other	way	round	 (Ben-Amos	et	al.	2010).	For	example,	ATU	301	 ‘The	Three	18	

Stolen	Princesses’	occurs	in	Greek	and	Indian	myths	that	long	predate	Basile’s	Italian	fairy	tale	of	1634.	19	

Similarly,	versions	of	ATU	325	‘The	Magician	and	His	Pupil’,	ATU	560	‘The	Magic	Ring’	and	ATU	670	‘The	20	

Man	Who	Understands	Animal	 Languages’	appear	 in	 Indian	and	Middle	Eastern	sources	 (including	 the	21	

Ramayana	and	One	Thousand	and	One	Nights)	 that	are	 clearly	 independent	of	 later	European	 literary	22	

versions	of	these	tales	(Thompson	1977).	23	

An	alternative	explanation	for	the	distribution	of	these	tales	 is	that	they	reflect	signatures	of	demic	or	24	

cultural	 diffusion	 that	 are	more	 ancient	 than	 the	 other	 patterns	 detected	 in	 the	 dataset.	 In	 order	 to	25	

characterize	these	signatures,	we	sought	to	identify	possible	centers	of	origin	and	dispersal	for	the	tales.	26	

To	 do	 so,	 we	 assessed	 the	 amount	 of	 linear	 correlation	 between	 geographic	 distance	 from	 each	27	

population	exhibiting	a	given	 tale	and	 the	distribution	of	 the	proportion	of	 the	 remaining	populations	28	

displaying	that	tale	over	the	same	geographic	gradient.	More	specifically,	we	binned	pairs	of	populations	29	

into	fixed	intervals	of	geographic	distance	(2000	Km),	and	for	each	bin	we	calculated	the	proportion	of	30	

populations	exhibiting	a	given	folktale.	We	then	calculate	linear	correlation	between	the	distribution	of	31	
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percentages	obtained	 for	each	geographic	bin	and	geographic	distance	 from	all	 the	populations	 in	 the	1	

dataset	 that	 exhibit	 that	 folktale.	 All	 the	 above	 mentioned	 analyses	 have	 been	 performed	 in	 R.	 The	2	

assumption	is	that	-	if	we	envisage	a	long-range	and	ancient	diffusion	process	whose	vectors	are	solely	3	

human	dispersal	and	traditional	cultural	transmission	-	we	expect	to	obtain	a	distance-decay	patterning	4	

with	 higher	 percentages	 indicating	 potential	 “origin	 populations”	 from	 which	 increasingly	 lower	5	

percentages	depart	forming	a	clinal	trend	over	geographic	distance.	To	avoid	losing	information	we	did	6	

not	focus	on	single	coordinate	pairs	exhibiting	the	highest	values	for	each	tale,	and	plotted	instead	the	7	

distribution	of	 correlation	 coefficients	on	a	map	 in	order	 to	 visually	define	 the	most	probable	 area	of	8	

origin	 (centres	of	origin	exhibiting	 the	 lowest	 correlation	coefficients;	 Figure	S8-I).	Probability	 surfaces	9	

were	obtained	by	interpolating	correlation	coefficients	computed	for	each	population	using	the	function	10	

producing	plate	spline	interpolation	of	the	fields	package	in	R	[47].	11	

The	 resulting	 potential	 patterns	 of	 diffusion	 are	 represented	 in	 Figure	 S6-I.	 Although	 each	 of	 these	12	

patterns	presents	some	specificities,	some	general	trends	can	be	found	-	as	summarized	in	the	main	text.	13	

In	particular,	four	main	multi-directional	waves	of	diffusion	can	be	hypothezised:	14	

1. Potential	African	origin	(e.g.	ATU	670)	15	

2. Southward	spread	from	northern	Eurasia	(e.g.	ATU	700)	16	

3. Eastern	European	origin	(e.g.	ATU	301,	303,	313)	17	

4. Middle-Eastern/Caucasian	origin	(e.g.	ATU	314,	400,	480,	560)	18	

 19	

While	 further	 research	 is	 needed	 to	 verify	 these	 patterns	 (for	 example,	 by	 reconstructing	 the	20	

evolutionary	histories	of	variants	of	each	tale	type	to	test	whether	they	match	the	dispersal	scenarios),	21	

the	 results	 have	 significant	 implications	 for	 current	 understandings	 about	 the	 origins	 of	 international	22	

folktale	 traditions.	 In	 particular,	 they	 suggest	 a	 less	 Euro-centric	 view	 of	 tale	 origins	 than	 traditional	23	

"historic-geographic"	reconstructions	based	on	the	frequency	of	variants	(i.e.	the	number	of	versions	of	24	

a	given	tale	type	recorded	in	each	population)	and	chronology	of	literary	versions.	A	major	problem	with	25	

this	approach	is	that	conclusions	about	a	tale's	origins	may	often	be	skewed	by	the	strong	European	bias	26	

in	 both	 the	 richness	 of	 the	 folktale	 and	 literary	 records.	 For	 example,	 ATU	 300	 'The	Dragon	 Slayer'	 –	27	

which	has	 been	proposed	 to	be	 the	original	 archetype	 storyline	 from	which	 all	 fairy	 tales	 are	derived	28	

(Propp	 1968)–	 was	 previously	 believed	 to	 have	 originated	 in	 medieval	 western	 Europe,	 most	 likely	29	

France,	where	the	earliest	known	versions	were	recorded.	Our	analysis	instead	suggests	that	this	tale	–	30	

together	with	 the	 related	 tale	ATU	313	 'The	 Twins'	may	have	 arrived	 in	western	 Europe	 from	 further	31	
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east,	either	 from	the	region	of	modern	day	Ukraine	and	Belarus,	or	of	Turkey	and	Kurdistan.	Similarly,	1	

whereas	folklorists	have	claimed	that	ATU	670	'The	Man	Who	Understands	Animal	Languages'	originated	2	

in	 Europe	 and	 was	 transported	 to	 Africa	 through	 colonialism,	 our	 findings	 reverse	 the	 direction	 of	3	

transmission	and	suggest	that	the	tale	probably	arose	in	North	Africa.	 	4	
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Figure	S1-8-I	-	Plot	of	the	probable	areas	of	origin	of	the	19	“most	popular”	tales:	Probability	surfaces	1	

have	 been	 obtained	 interpolating	 correlation	 coefficients	 computed	 for	 each	 population.	 Grey	 dots	2	

indicate	populations	that	do	not	exhibit	the	specific	tale	of	interest.	1)	Tale	155;	2)	Tale	300;	3)	Tale	301;	3	

4)	Tale	303;	5)	Tale	313;	6)	Tale	314;	7)	Tale	325;	8)	Tale	400;	9)	Tale	403;	10)	Tale	480;	11)	Tale	531;	12)	4	

Tale	550;	13)	Tale	554;	14)	Tale	560;	15)	Tale	563;	16)	Tale	613;	17)	Tale	670;	18)	Tale	700;	19)	Tale	707.	5	


