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Abstract: We present preliminary results of an Earth observation approach for the study of past 
human occupation and landscape reconstruction in the Central Sahara. This region includes a 
variety of geomorphological features such as palaeo-oases, dried river beds, alluvial fans and 
upland plateaux whose geomorphological characteristics, in combination with climate changes, 
have influenced patterns of human dispersal and sociocultural activities during the late Holocene. 
In this paper, we discuss the use of medium- and high-resolution remotely sensed data for the 
mapping of anthropogenic features and paleo- and contemporary hydrology and vegetation. In the 
absence of field inspection in this inaccessible region, we use different remote sensing methods to 
first identify and classify archaeological features, and then explore the geomorphological factors 
that might have influenced their spatial distribution.  
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1. Introduction 

Analysing spatio-temporal characteristics of human-driven landscape change is key for 
assessing the ecological and socioeconomic consequences of landscape transformations. Deserts 
have been—and still are—places of innovation, where humans have been fluidly adapting to 
extreme environmental conditions. Identifying evidence of human activity in arid lands is crucial to 
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understand how past (and present) communities coped with the scarcity of natural resources. 
Accessibility of many North African and Middle East desert regions has always been limited, due to 
their physiography and climate. In recent years, access has been further reduced due to political 
instability, civil war and unsafe fieldwork conditions. As a consequence, archaeological 
investigations in these regions have been profoundly affected, with the majority of field-based and 
long-term research projects interrupted. In general, archaeological research in North Africa has 
focused on the so-called ”Green Sahara”, i.e., the wetter period from ca. 15,000 to 5000 years before 
present (BP), when major socioeconomic transformation occurred in the region, including the shift to 
food production through the adoption of pastoralism, and the early use of cattle by-products. Late 
prehistoric, historical, and even modern and current activities, which correspond to the last ~5000 
years (including the time periods of the “Dry Sahara” or “Brown Sahara”), are less well-known. 
Collecting information from cultural landscapes that are in danger of disappearing due to mining 
and oil/gas drilling [1–3], agricultural expansion [4,5] and, more recently, conflict [6] is paramount, 
not only for the preservation of the historic memory of these landscapes and in disentangling their 
dynamics, but also for future planning, conservation and development.  

Remote sensing (RS) and Geographic Information Systems (GIS) have demonstrated great 
potential for creating spatio-temporal datasets at a relatively low cost and high speed, as compared 
to field data collection [7,8]. This is particularly true in hyper-arid Africa, where collected field data 
are scarce, the areas to be covered are large, and the visibility of certain classes of archaeological 
evidence is high, since it contrasts with the background barren environment. In order to refine high 
temporal and spatial resolution datasets that may serve as background for the study of human–
environment interactions in the Sahara, we have developed a combined methodology for mapping a 
number of indicators of, and drivers for, human occupation in this environment, in particular during 
the ” Dry Sahara” period. This procedure allows for relatively rapid regional-scale archaeological 
mapping of visible remains, but also identifies proxies of ancient and current environmental settings 
where human occupation may have been concentrated in the past, such as river networks 
(paleohydrological mapping) or in humid areas (based on vegetation mapping of springs or oases). 
This procedure is aimed at creating an analytical environment where spatial analysis and spatial 
modelling approaches can be applied to understand the evolution of desert lifeways during the late 
Holocene.  

The Central Sahara: Archaeology, Environment, and Remote Sensing 

In the Central Sahara, previous work on the archaeology of the last 5000 years has focused 
mainly on SW Libya. The archaeological evidence in this region is represented by (i) rock shelters 
and caves, and (ii) open air sites. The records of rock shelters and caves have played a crucial role in 
the reconstruction of Holocene cultural trajectories [9], because their deposits host long sequences of 
Holocene occupation, from Epipalaeolithic hunter-gatherers to Neolithic pastoralists. However, in 
many cases the upper strata of archaeological deposits in rock shelters have been removed by wind. 
A few exceptions are some rock shelter sites in the Libyan Tadrart Acacus that have yielded 14C dates 
from occupation horizons of ca. 3000–1000 years BP [10]. On the other hand, recent studies of rock 
art [11] and carved texts [12,13] from SW Libya have demonstrated how a landscape approach to this 
evidence can shed new light on late prehistoric, historical, and modern human–landscape 
interactions. Most archaeological data, however, come from open-air sites that have higher visibility 
in the landscape. These sites include temporary pastoral campsites, stone cairns, villages, and 
outposts. Different types of Saharan funerary monuments have been described [14–19] and some 
new radiometric dates are available from recent excavations. Study of Garamantian (ca. 1000BC–
AD700) forts, outposts, and compounds [4,5,20–22] has shed light on a complex network of trade 
within the region, that further developed in medieval times [23,24]. In spite of this body of work, 
knowledge of the distribution of archaeological sites from the last 5000 years in the central Sahara is 
patchy, although recent work has started systematically mapping and cataloguing sites that are 
visible from high-resolution satellite imagery [4,5,25]. Despite the lack of refined chronological 
assessment and inevitable de-contextualization of the archaeological record, this approach has 
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populated large “empty” spaces, enabling systematic analysis of site categories and spatial 
distributions and setting a powerful basis for future field and remote investigations. 

The Central Sahara region includes a variety of active and relict geomorphological features, 
such as palaeo-oases, dried river beds, lowland alluvial fans, and upland plateaux whose 
geomorphological characteristics, in combination with climate changes, have influenced patterns of 
human dispersal and socio-cultural activities during the Holocene (e.g., [26]). Landscape 
characterization and geomorphic mapping are therefore fundamental for decoding the 
archaeological data of various types. In this paper, we discuss the use of different mid- and 
high-resolution remotely sensed data for the mapping of archaeological evidence, and landscape 
palaeo- and contemporary hydrology, and vegetation. 

Palaeohydrology has proven to be key in understanding the dispersal of hominins in Africa and 
the Arabian Peninsula during the Quaternary, and establishing where and why humans have 
moved in and out of arid areas [27,28]. Extensive and interconnected hydrological systems facilitated 
human dispersal during the “Green Sahara” phase [27] and also played an important role during 
drier periods when wadi beds were the focus of human activities and movements, as they are under 
similar conditions today [29]. The identification of river valleys using digital topographic data is 
therefore the first step to characterize Saharan paleohydrology, and the production of a 
high-resolution digital drainage network has been one of the first steps in this project.  

Digital hydrological networks such as HydroSHEDS, a global hydrologically conditioned 
dataset based on Shuttle Radar Topography Mission (SRTM) data, are publically available [30]. 
Nevertheless, such global products are released at a scale that fails to capture the smaller channels 
that are necessary for a sufficiently detailed representation of the region’s hydrology. This limitation 
can be overcome by using multiple digital elevation models (DEMs) and through standard digital 
hydrological network extraction techniques included in most off-the-shelf GIS software packages. 

In the Central Sahara, riverbeds host subsurface and surface moisture and are the foci of past 
and present human occupations. Given there is little difference in the climatic conditions between 
the full establishment of aridity in the region 5000 years ago and today [31], the mapping of the 
current vegetation pattern can be used to infer past conditions, and in turn indicate those areas that 
would have remained habitable during previous dry periods. Contrary to the popular belief that 
considers desert oases as the only areas with vegetation, the Central Sahara hosts a variable but 
permanent plant cover, along with an ephemeral grass cover that may be present across large 
regions following rain [32,33]. Drought-tolerant trees and shrubs represent an important natural 
resource, due to the high degree of water retention in their plant tissues. This is key to current 
pastoral systems in Saharan mountains, as these plants provide nourishment to sheep and goats. The 
trees and shrubs are also a clear indicator of subsurface humidity, and can be used as a guide to 
identify suitable hotspots of past human activity.  

It is widely accepted that remote sensing is a significant data source to study Land Use/Land 
Cover (LULC) and vegetation changes [34] in areas with high precipitation variability. Two main 
approaches have been used for this purpose: vegetation indices and classifications. Vegetation 
indices such as the Normalized Difference Vegetation Index (NDVI) exploit the high reflectance of 
vegetation in the near-infrared and high absorption in the red bands of the spectrum. The contrast 
between these channels can be used as an indicator of vegetation health, since it is a parameter that 
correlates well with photosynthetic activity [35]. NDVI is also a good proxy for the presence of 
vegetation in an area, since NDVI values between 0.3 and 0.8 are an indication of vegetation, 
whereas values of 0.2 to 0.3 represent bare soils, and negative NDVI values represent water. Feature 
extraction from multispectral remote sensing images is thus possible by thresholding NDVI values, 
and can be used spatially to map different LULC classes in a given area. The NDVI index has also 
been used to detect high water table zones in humid warm-temperate regions [36] and to evaluate 
the effects of precipitation in semi-arid landscapes [37]. 

Classification is the process of extracting differentiated classes or themes (such as land use 
categories or vegetation species) from raw remotely-sensed satellite data. Unsupervised 
classification has been traditionally used for thematic mapping of areas for which no ground data 
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are available, while supervised classification requires training datasets, generally collected through 
ground surveys, which are then used as predictor variables to assign pre-determined known classes 
to the sampled units. Maximum likelihood classifiers (MLC) have been extensively used for 
supervised classification methods but, since they require the spectral response of each class to follow 
a Gaussian distribution, their results are limited in quality, due to the fact that most data (in 
particular in complex landscapes) do not follow such distributions, meaning that the accuracy of 
class separation is reduced [38]. Non-parametric classifiers, that do not rely on normal distributions, 
such as support vector machine and random forest classifiers, have been shown to outperform MLC 
in many settings [39–41]. 

In this paper, we present the methodology and first results of an integrated study of the human 
(anthropogenic) and geomorphic landscape elements from the Central Sahara, mapped using 
remote sensing data and analysed using GIS approaches (Figure 1). This paper focuses exclusively 
on the remotely-sensed proxies that can be used to develop a more nuanced understanding of 
human–landscape interactions during the last 5000 years in the region. Satellite data analyses at 
varying resolutions coupled with spatial analyses of topographic derivatives and environmental 
proxies using GIS provide a powerful approach to the mapping of large areas in a semi-automated 
manner. In this paper, we introduce the study area, then outline the datasets and methods used (for 
land cover, palaeo-hydrology, and identifying anthropogenic signatures), and then provide some 
local examples illustrating these human–landscape relationships, based on detailed numerical 
analysis and modeling from remote sensing data coupled with contextual archaeological data.  

 
Figure 1. The schematic GIS workflow used in this study. Blue boxes include types of 
satellite imagery. Processing steps are in ovals, representing ArcGIS processing (yellow), 
ENVI processing (orange) and R processing (purple). Red boxes feature the output 
datasets. The green box represents the final output. 
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2. Materials and Methods 

2.1. Study Area 

The study area includes the southeasternmost sector of the plateau of the Tassili n’Ajjer 
(Algeria), the valley of the Wadi Tanezzuft (Algeria/Libya), and a small part of the Tadrart Acacus 
(Libya), covering c. 3000 km2 in total (Figure 2; see also par. 2.2). Within this region, the Tassili is a 
rugged and largely inaccessible plateau [42], while the Tadrart Acacus features flat-topped 
structural terraces [10]. Both areas are incised by wadis that have been the foci of past and current 
human occupations. The valley of the Tanezzuft, a 200 km-long strip running N-S and marking the 
international border between Algeria and Libya, separates the SE part of the Tassili from the SW 
sector of the Tadrart Acacus. The Tassili and the Tadrart were inscribed as UNESCO World Heritage 
Sites for their rock art in 1982 and 1985, respectively [43,44]. The archaeology of the southeastern 
Tassili n’Ajjer plateau is still poorly known, and its restricted military zone status due to its 
proximity to the international border has hampered archaeological research in recent decades. 
However, important archaeological remains have been previously reported [43,45] and are clearly 
visible on satellite imagery [46].  

 
Figure 2. Details of the study area. (a) Geopolitical setting (base map: ESRI); (b) Digital 
Elevation Model (DEM) at a spatial resolution of 1 arc-second (30 m) overlain with the area 
of interest (black polygon, which includes parts of the Tassili n’Ajjer and the Tadrart 
Acacus). SRTM data courtesy of the United States Geological Survey (USGS, 2014, base 
map: SRTM v4.1, www.cgiar-csi.org); (c) detail of the study area boxed in (b) featuring the 
WorldView (WV) tiles used for mapping purposes (blue: WV1, red: WV2, green: WV3); for 
the characteristics of the WV imagery, see Section 2.2.2. 
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2.2. Imagery Data  

2.2.1. SRTM and ASTER DEM 

The SRTM 1 arc-second DEM topographic data (v. 3) provides a horizontal resolution of 30 m 
and vertical accuracy of ±14 m. NASA released data covering regions outside the USA at this 
resolution, starting from September 2014. This near-global DEM was created using interferometric 
data acquired through the SRTM flown aboard the space shuttle Endeavor in February 2000 [47]. A 
total of 16 SRTM tiles was used, covering a region slightly larger than the study area, to allow for the 
correct calculation of drainages prior to cropping to the exact study area, and were then mosaicked 
prior to processing.  

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global 
Digital Elevation Model Version 2 (GDEM V2) was released in October 2011 by the joint mission of 
the Ministry of Economy, Trade, and Industry (METI) of Japan and NASA [48]. This product was 
generated using stereo-pair images collected by the ASTER instrument onboard Terra. The GDEM is 
provided at a 1 arc-second (30 m) resolution. The vertical accuracy of the DEM data is 17 m with 95% 
confidence without ground control point (GCP) correction for individual scenes. 

Whilst in general SRTM data are considered to be more spatially consistent than ASTER since 
they are not affected by clouds, both systems show greater spatial and elevational error in very steep 
and rugged terrains, with ASTER having some advantage due to its nadir view. Both sensors have 
difficulties in smooth, flat terrain such as desert sand sheets, where little of the SRTM radar signal is 
reflected back to space, and where ASTER stereoscopy is hindered by the lack of earth’s surface 
patterns to correlate the stereo views [49]. Given these limitations, which may impact on the ability 
of either dataset to extract digital hydrological networks in desert regions, both SRTM and ASTER 
data were used in this project, and were compared for their overall performance. 

2.2.2. Worldview 1–3 

WorldView (WV) 1 to 3 data, acquired through grant aid from the DigitalGlobe Foundation 
(www.digitalglobefoundation.org), were used for mapping of archaeological features in the region. 
The area covered by WV2 imagery was used as a pilot for the creation of a vegetation map of the 
whole study area. WV2 covers, in its NE sector, a corner of Libyan territory where previous 
archaeological and geomorphological research has been carried out for the last 50 years, and also by 
one of the authors (e.g., 9). Therefore, we are confident that remotely sensed data from this region 
can be corroborated by field data. The whole dataset consisted of 3081.75 km2 (Figure 2) of WV1-3 
tiles. Launched between 2007 and 2014, the WorldView satellites have high spatial and increasingly 
higher spectral resolution sensors, featuring 0.50 m (WV1), 0.46 m (WV2) and 0.31 m (WV3) 
panchromatic imagery, 2 m multispectral imagery in 8 bands (WV2), 1.24 m multispectral imagery in 
8 bands, and 8 short wave infrared bands at 3.7 m spatial resolution (WV3). The images were 
acquired in different dates, as reported in Table 1, under clear sky conditions. 

Table 1. Synoptic characteristics of WorldView imagery used in this study.  

 WorldView-3 WorldView-2 WorldView-1
Date acquired 25 October 2014 15 July 2013 9 May 2014 

Panchromatic spatial resolution 31 cm 46 cm 50 cm 
Swath Width at Nadir 13.2 km 16.4 km 17.6 km 
Average Revisit Time 1 day 1.1 days 1.7 days 

Spectral Bands Pan + 8MS + 8 SWIR + CAVIS Pan + 8MS Pan 
Accuracy 3.5 m CE90 3.5 m CE90 4 m CE90 

The acquired images, provided by DigitalGlobe™ at a Standard 2A level, had already been 
orthorectified and projected (Universal Transverse Mercator: UTM zone 32 North and WGS-84 
Geodetic datum) and were not further processed geometrically by the authors. The WV2 images 
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used for the Random Forest (RF, see Section 2.4.2) classification were radiometrically calibrated to 
obtain reflectance from radiance values, and were atmospherically corrected using the FLAASH 
(Fast Line-of-sight Atmospheric Analysis of Hypercubes) procedure in ENVI (Environment for 
Visualizing Images) v.5.3 software [50]. FLAASH is a first-principles atmospheric correction tool that 
corrects wavelengths in the visible through near-infrared and shortwave infrared regions up to 3 
µm, and incorporates the MODTRAN® (MODerate resolution atmospheric TRANsmission) 
radiation transfer code to model atmospheres and aerosol types [51]. It also corrects for the effects of 
atmospheric propagation on measurements acquired by air and space-borne systems. These 
corrections allow for the retrieval of accurate reflectance spectra. The atmospheric correction was 
performed using standard parameters with an average ground elevation of 1300 m, a Tropical 
atmospheric model, and no aerosol retrieval.  

2.3. Delineation of Surface and Near-Surface Drainage Networks 

Standard GIS hydrology procedures based on the D8 approach developed by Jenson and 
Domingue [52] were applied in ArcGIS v.10.3 to the mosaicked and void-filled 1 arc-second SRTM 
and ASTER data. As a first step, a fill procedure was applied to the DEMs in order to locate and fill 
spurious sinks and to ensure proper delineation of basins and streams. In fact, although sinks may 
occur naturally in a landscape (e.g., lakes, floodplains, ponds), in a derived DEM they are often 
manifested as errors due to the resolution of the data or by rounding of elevations to the nearest 
integer value, and do not necessarily correspond with actual features in the terrain [53]. The sink fill 
function in ArcGIS progressively fills all sinks in the DEM by increasing their elevation value, and it 
iterates until all sinks within the specified z limit are filled. The z limit for sink filling was not 
specified, but was iterated until all sinks were filled, independent of the fill depth. Flow direction 
was determined by finding the direction of steepest descent from each cell with respect to 
surrounding cells. Each cell in the flow direction layer has its flow direction coded according to the 
D8 model in ArcGIS. Finally, to derive the stream network, a flow accumulation function was 
applied which calculates the number of upslope cells flowing to a particular location. Different 
thresholds (of 10,000 to 250 cells) were used to extract different raster stream networks from the flow 
accumulation file, and to allow examination of the hydrological characteristics of the region at a 
range of scales. In this manner, both small streams and major drainage systems can be differentiated. 

After the raster stream network was vectorised, the results were verified through visual 
inspection against WV imagery where possible, and using high-resolution colour imagery in 
GoogleEarth (for the areas of the network that extend beyond the available WV imagery). This 
integrated approach allowed for visual interpretation of the results and the removal of spurious 
channels through pruning, in particular around paleolakes and natural depressions.  

2.4. Land Cover 

2.4.1. Defining Land Cover Classes and Reference Data Collection 

Ground reference data could not be collected for this work due to the inaccessibility of the 
study area. Nevertheless the limited number of land cover classes that characterize the Sahara, and 
the high resolution of the multispectral and panchromatic imagery available for the study, allowed 
for the use of WV imagery itself for the choice of the training and testing classes. These broad classes 
were aimed at providing a general description of land cover, with particular focus on identifying 
different types of vegetation to contrast to other land cover types, such as sand and rock outcrops. A 
class identifying shadows in the rocky landscape (present in the proximity of steep slopes) was also 
created, since initial optimization tests on the dataset had shown that shadows played a significant 
role in confusing other classes. Seven broad classes were identified, and reference points were 
generated using classic heads-up techniques incorporating the colour (spectral), shape, texture, 
shading and pattern information of the available WV2 data, in a pansharpened image that combined 
panchromatic and multispectral information of the area examined. The reference points were then 
overlain on the WV2 image to create regions of interest (ROIs) to train and validate the classifier 
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(Table 2) by randomly splitting the reference data into 70% training and 30% independent validation 
datasets (Table 2), which is a standard approach used for accuracy assessment in remote sensing 
studies [54]. 

Table 2. Number of training and validation datasets collected for different land cover classes in the 
study area. 

Land Cover Class Code Training Dataset Validation Dataset Total
Woody vegetation (mainly Acacia trees) WV 104 45 149 

Shrub SH 104 44 148 
Crops CR 70 30 100 

Water body WB 69 30 99 
Sand dune SD 104 45 149 

Rock RK 104 45 149 
Shadow SW 102 44 146 

2.4.2. Random Forest (RF) Classifier 

Decision learning trees such as classification and regression trees (CART) are commonly used 
for data mining and have been one of the most successful methods for undertaking supervised 
classification [55]. To improve the accuracy of CART, [56] developed an ensemble learning technique 
called Random Forest (RF) by introducing the idea of bagging (bootstrap aggregating) to the 
decision trees. This method involves combining multiple decision trees where each tree contributes a 
single vote for the assignment of the most frequent class to the input data. Many binary classification 
trees (ntree) are built by RF using several bootstrap samples with replacements drawn from the 
original observations. Samples not in this bootstrap sample are called out-of-bag (OOB) samples. 
These OOB samples, which are about a third of the total dataset available, can be used to estimate 
the misclassification error and to measure the importance of each variable in the final model [56,57]. 
A given number of input variables (mtry) at each node was randomly chosen from a random subset 
of the features, and the best split was calculated by utilizing only this subset of features. No pruning 
was performed and all trees in the forest are maximally-grown trees so as to ensure low bias [58]. 
Mtry in this study is defined as the square root of the total number of spectral bands. In order to 
improve the classification accuracy, RF parameters (i.e., mtry and ntree) have to be optimized [56,59] 
and the default number of trees (ntree) is 500, while the default value for the number of variables 
(mtry) is the square root of the total number of spectral bands used in the study [56]. A 10-fold 
grid-search approach based on the OOB estimate of error was used in this study to find the optimal 
combination for these two parameters, with the mtry value being varied from 1 to 5, and the ntree 
parameter varied from 500 to 10,000. The Image RF tool in EnMAP-Box was used to perform the RF 
classification. 

In the present study, the package [60] developed for R statistical computing language was use 
to perform both the optimization and the classification algorithms.  

2.4.3. Accuracy Assessment 

The accuracy of the RF classifier was assessed using the independent test dataset (30%). A 
confusion matrix was constructed to compute the overall accuracy (OA), user’s accuracy (UA) and 
producer’s accuracy (PA) as criteria for evaluating the ability of the RF classifier to detect the classes 
present in the analysed landscape. OA is a ratio (%) of the number of correctly-classified samples 
against the number of test samples, while UA represents the likelihood that a sample belongs to a 
specific class and that the classifier accurately assigns it this class. PA expresses the probability of a 
certain class being correctly recognized. In addition, the kappa coefficient was calculated to provide 
a measure of the difference between the actual agreement, the reference data, and the classifier used 
to perform the classification, versus the likelihood of agreement between the reference data and a 
random classifier [54]. 
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2.5. Anthropogenic Signatures in the Landscape 

All of the panchromatic tiles of WV1-3 imagery were loaded in ArcGIS v.10.3. The study area 
was overlain with a grid consisting of 300 west-east strips, each of 250 m width. Each strip 
underwent systematic visual inspection, and every identified archaeological feature was digitised as 
a point located in the middle of the feature, and assigned to a thematic layer. All records were 
classified according to their morphological characteristics and size. Anthropogenic features that can 
be identified through imagery visual inspection mainly consist of tombs, monuments, settlements 
(including seasonal tented encampments and huts), forts (qsur), irrigation channels (foggara), crop 
fields, and stone enclosures of uncertain use (see Table 3). Other types of sites with an archaeological 
record, such as caves and rock shelters, cannot be identified through remote sensing data but they 
can be spatially located if they have been previously reported in the literature. Three issues are 
important in remotely sensed archaeology: (i) the intrinsically-problematic notion of defining an 
“archaeological site”; (ii) the correct identification of the archaeological evidence; and (iii) its correct 
chronological attribution. Archaeological landscapes are horizontal and vertical palimpsests, often 
lacking physical discontinuities. The adoption of the notion of “site” (issue i) has proven problematic 
in North African archaeology (for recent comments, see [1,61]) and in general [62,63]. There are 
epistemological, methodological, and practical issues around the identification of “sites”, especially 
where landscapes show a wide variety of different types of anthropogenic signatures. For this 
reason, we adopt the more neutral term “anthropogenic feature”. Most of the features identified 
consist of well-delimited single structures (e.g., tomb, hilltop fort), although some more enigmatic 
(e.g., enclosures) or complex or composite features (e.g., modern pastoral campsite with a number of 
features within it) are less easily defined. To minimize the risk of misidentification (issue ii), we rely 
on operators’ knowledge acquired through fieldwork in neighbouring areas of the SW Fazzan 
[1,9,29], Wadi ash-Shati region [5,64,65], and Fadnoun range [66]. Direct experience of comparable 
archaeological evidence, coupled with information from published data, reduces the risk of 
misidentification and incorrect chronological attribution (issue iii), especially in view of the 
relatively high standardization of the majority of Saharan monuments and features.  

Table 3. Comparison of the extracted hydrological data using different datasets in this 
study (ASTER, SRTM), with existing data (HydroSHEDS).  

 Streams Count Total Stream Length (km)
ASTER  

(1000 cells stream network) 2139 2804.330 

SRTM  
(1000 cells stream network) 1990 2742.050 

HydroSHEDS  
(SRTM derived digital hydrological network) 106 670.108 

Twenty minutes of uninterrupted inspection have proven to be an average time for completing 
a single strip. The digitization of the entire study area took ca. 100 hours. Verification and validation 
of the data were performed by randomly repeating the digitization of the same strip by different 
operators, in order to test for misidentification and/or false positives. Final identification of evidence, 
in particular of traces classified as “uncertain”, is still undergoing revisions and subject to minor 
changes.  

2.6. Statistical Analysis 

In order to evaluate whether variation in the spatial density of anthropogenic features was 
determined at least in part by vegetation and drainage, a series of Poisson point process models have 
been fitted to the data and compared using the Akaike Information Criteria (AIC) and McFadden’s 
pseudo-R2 using the spatstat package [67,68] in R statistical language [60]. Models were based on 
three covariates: (1) an elevation map based on the ASTER DEM; (2) an Euclidean distance map with 
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respect to the drainage network; and (3) a 1-km bandwidth Gaussian kernel density map of the 
vegetation, as extracted using the Random Forest classifier. 

3. Results 

3.1. Hydrological Network 

We have produced a drainage network that optimizes the results of extracted ASTER and 
SRTM data at a range of scales. This network increases the accuracy of the available datasets 
(HydroSHEDS) for the study area (Table 3). The generated data successfully delineate the major and 
minor drainages and paleodrainage courses (Figure 3). This precision allows for high-detail regional 
and site-specific paleohydrological research, in combination with archaeological data, and other 
proxies identified in this study.  

 
Figure 3. Comparison of the HydroSHEDS hydrological product (yellow) with the 
hydrological network derived from the ASTER DEM (using 1000 cells) (blue) used in this 
study.  
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3.2. Land Cover Classification for the Extraction of Vegetation 

3.2.1. Random Forest Parameters Setting 

Random forest input parameters (ntree and mtry) were optimized using a grid search and a 
10-fold cross validation (CV) method. The results illustrate that ntree values of 1000, 2500, 5500, 6500 
and 7500 combined with mtry values of 2 and 3 produced the lowest OOB error (12.5%). The highest 
OOB error was produced by the highest mtry values of 8 (Figure 4).  

 
Figure 4. Results of random forest optimization. The OOB error was calculated using a 
10-fold cross validation (CV) and the training data sets. 

3.2.2. Vegetation and Other LULC Classification  

A land use/land cover (LULC) map was generated using a RF classifier to discriminate between 
cultivated fields, wooded vegetation (mainly Acacia trees) and shrubs from other land cover and 
land use types (Figure 5).  

The RF classifier also provides a measure of the contribution of every variable (WV2 bands) in the 
LULC mapping as part of the classification process (Figure 6) through the mean decrease in accuracy 
measure. The mean decrease in accuracy is determined during the OOB error calculation. The more 
the accuracy of the RF decreases due to the exclusion (or permutation) of a single variable, the more 
important that variable is deemed, and therefore variables with a large mean decrease in accuracy are 
more important for classification of the data. This measure, illustrated in Figure 5, clearly indicates that 
the near-infrared bands (bands 7 and 8) were the most influential in the classification process since 
they present the highest mean decrease in accuracy values. The overall accuracy of the LULC 
classification drops by about 4.5% when the near-infrared bands are omitted from the classification 
model. 
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Figure 5. Land use/land cover (LULC) map generated using a RF classifier (Satellite image 
courtesy of the DigitalGlobe Foundation). 
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Figure 6. Illustration of the importance of WV2 bands in vegetation and other LULC 
classifications, calculated using the mean decrease in accuracy index. The highest mean 
decrease in accuracy indicates the most important bands. Bands 7 and 8 are therefore 
considered to be most important and Band 5 least important. 

3.2.3. Accuracy Assessment 

Accuracy assessment was carried out in order to evaluate the prediction performance of the RF 
classifier using the independent test dataset. Table 4 describes the confusion matrix of the LULC 
types. The classification model has an overall accuracy of 82.01% with a Kappa value of 0.789.  

Table 4. Confusion matrix and classification of the accuracies of the seven classes of wooded 
vegetation (WV), crops (CR), rocks (RK), sand dunes (SD), shrubs (SH), shadow (SW), and water 
bodies (WB). The accuracies include the overall classification accuracy (OAC), kappa statistic, 
producer accuracy (PA) and user accuracy (UA).  

 WV CR RK SD SH SW WB Total UA 
WV 35 3 0 0 8 0 0 46 76.08 
CR 4 23 0 0 1 0 0 28 82.14 
RK 1 0 40 1 0 0 0 42 95.24 
SD 0 0 3 40 9 0 0 52 76.92 
SH 3 4 1 3 26 0 0 37 70.27 
SW 1 0 0 0 0 38 3 42 90.48 
WB 0 0 0 0 0 5 26 31 83.87 

Total 44 30 44 44 44 43 29 278  
PA 79.55 76.67 90.91 90.91 59.09 88.37 89.66   
OA 82.01%         

Kappa 0.789         

In general, all LULC classes achieved over 76% user’s accuracy, with the exception of shrubs 
(SH), which had 70.27% due to spectral confusion with wooded vegetation (mainly Acacia trees), 
crops, rocks and sand dunes. All LULC classes achieved over 80% producer’s accuracy, with the 
exception of crops (76.67%) and shrubs (59.09%). Crops were confused with wooded vegetation and 
shrubs, possibly due to a similar spectral response (according to the classifier). Shrubs were 
confused with wooded vegetation, crops and sand, which resulted in an overestimation of the 
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presence of vegetation in sand dune areas (easily confirmed by visual inspection of the classified 
image with WV2 panchromatic imagery covering the same area). This is most probably due to the 
morphology of the shrubs’ canopy, which is not dense and permits high visibility of the sandy 
surface below. The classifier could therefore have confused these mixed spectral signatures (Figure 
7). This confusion between sand dunes and shrubs not only reduces both user’s and producer’s 
accuracies, but contributes negatively to the overall combined accuracy. In arid areas the reflection 
of soils, rocky outcrops, and sand therefore poses serious challenges to the discrimination of sparse 
and patchy vegetation in these landscapes [69]. 

 
Figure 7. Spectral signatures of the RF classifier, before (a) and after (b) atmospheric 
corrections. 

3.3. Anthropogenic Features 

Visual inspection has identified more than 7000 anthropogenic features in the study area (Table 
5, Figure 8). Almost all grave types known to occur in the Central Sahara have been identified in the 
study area. The majority of these graves (n = 5261 tombs) are round stone structures 3-5 m in 
diameter, or drum shaped or bazinas (Figure 9), which are likely of Garamantian age. These tombs 
are generally clustered in necropoleis, representing the most tangible evidence of historical human 
occupation in the Fazzan. The study area is close to the Garamantian necropolis of Fewet [70], and 
includes the published graves of Ti-n-Alkoum [45]. In contrast to the Garamantian burials, conical 
tumuli of the Late Pastoral age are more isolated, as confirmed by recent fieldwork in the southern 
reaches of the Tadrart Acacus [71], and can be of large sizes. The west side of the Wadi Tanezuft 
appears to be a key area for likely Garamantian occupation, not far from present-day oases. On the 
other hand, other complex graves are widely dispersed, but some parts of the study area seem to be 
devoid of such evidence, especially throughout the Tadrart Acacus.  

Six fortified/compound settlements have also been recorded thus far. These are characterized 
by a stone enceinte that delimits the perimeter of the settled area. Some of these forts are located on 
hilltops, consistent with those already noted in the Wadi el Ajal [21] and Wadi ash-Shati [5]. These 
forts reportedly have a long history of occupation, commonly from historic to medieval times but 
occasionally to the modern period. More than 600 features have been labelled as “uncertain”, 
roughly about 10% of the whole dataset. These are features that cannot be definitively classified and 
should be subjected to ground-truthing.  
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Figure 8. Map of anthropogenic features recorded in the study area (boxed) (satellite image 
courtesy of the DigitalGlobe Foundation). 

Table 5. Summary of different anthropogenic features identified in this study.  

 Approx. Chronology N 
Complex Graves Late/Final Pastoral (c. 3000–1000BC)  

Antenna  9 
Crater  13 

Crater on platform  2 
Crescent  7 

Flat tumulus  9 
Keyhole  44 
Platform  212 

Stone ring   2 
Tumulus  43 

Tumulus on platform  190 
Tumulus with enclosure  1 

Total complex graves  532 
Simple Graves Mostly historical (1000BC-AD700 ) 5261 

Ksur/Compounds Historical to Islamic 6 
Enclosures Late/Final Pastoral 55 

Stone Alignments ? 7 
Contemporary Settlements 534 

Uncertain 633 
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Figure 9. Selected examples of anthropogenic features recorded in the study area. (a) 
Garamantian necropolis and hilltop qasr; (b–d) different stone cairns from the Late/Final 
Pastoral period; (e) enigmatic stone enclosures; (f) Tuareg campsite (panchromatic satellite 
imagery courtesy of the DigitalGlobe Foundation).  

3.4. Point Process Models 

When environmental factors are examined individually, elevation showed the best fit to data, 
with a McFadden’s pseudo-R2 of 0.1652 (Table 6). Drainage and vegetation both performed poorly 
individually, but models combining both variables with elevation (either considering only the main 
effects or including interaction) showed a drastic decrease in the AIC, and a pseudo-R2 over 0.2, 
suggesting a fairly good fit to the data (see [70]: 306–307 for interpretation of pseudo-R2 in relation to 
coefficients of determination). 

Table 6. Fitted Poisson point process models with AIC, ΔAIC, Akaike weights (w) and pseudo-R2. 

 AIC ΔAIC w Pseudo-R2 
Drainage × Vegetation × DEM 75,583.03 0 1 0.2473 
Drainage + Vegetation + DEM 76,039.08 456.05 <0.0001 0.2303 
DEM 77,814.92 2231.89 <0.0001 0.1652 
Drainage 81,963.86 6380.83 <0.0001 0.0135 
Vegetation 82,280.59 6697.56 <0.0001 0.0019 
Intercept only 82,329.67 6746.64 <0.0001 NA 
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4. Discussion 

High-resolution imagery, such as the WorldView data we have used in this study, is 
undoubtedly a powerful tool for identifying, interpreting, and analysing the late Holocene record of 
the central Sahara. The high number of anthropogenic features recorded, along with their 
identification, clearly demonstrates the significance of Earth Observation techniques for the 
mapping and monitoring of cultural heritage. Previous direct knowledge of the area is, however, of 
added value to the remote sensing data in terms of field validation and in providing radiometric 
dating control. In the absence of previous fieldwork in the study area, it is likely that the 
identification and interpretation of anthropogenic features would have been more difficult. 

In addition, our integrated research approach is a useful way to explore and interpret cultural 
heritage in regional environmental context(s). Our analyses confirm the relevance of vegetation and 
drainage for understanding spatial variations in archaeological evidence. The fitted point process 
model suggests that the interplay of vegetation, drainage and elevation successfully explains the 
global variability in the distribution of anthropogenic features (Table 6). However, different types of 
vegetation, drainage or different ages of anthropogenic features were not disaggregated for this 
study, nor different types of local and inherent spatial dependence (e.g., clustering or repulsion) 
were not considered in the point process model [72–74]. Furthermore, the model so far does not 
include the limited number of rock art sites published (e.g., [11]) covering the last 5000 years.  

Although full results from the wider study area are incomplete, the examples presented here 
illustrate the predictive and interpretive potential of combining present-day vegetation and 
hydrological data. This study also confirms that classifying vegetation in desert environments is not 
trivial [69]. Traditional pixel-based image methods, such as the ones used in this study, are in fact 
limited since image pixels are not true geographical objects and pixel topology is limited and 
overlooks the spatial photo-interpretive elements such as texture, context and shape [75,76]. 
Moreover, with high spatial resolution imagery such as WV2, the variability implicit within the class 
sometime confuses the pixel-based classifiers and results in lower accuracy, in particular for 
vegetation classes. Therefore, we believe that misclassifications of the vegetation classes seen in this 
study can be attributed to the high spectral variation within the same vegetation class. To improve 
our results, alternative approaches that integrate object-based classification and advanced classifier 
algorithms should be used. Another possible way to improve our results could include the use of 
Linear Discriminant Analysis (LDA) [41], which can further analyze spectral signatures and thus may 
redefine vegetation classes not at pixel level. In the case of shrubs, whose spectral signature is a 
combination of vegetation and bare ground, segmentation processing (i.e., drawing polygons 
including a number of pixels) and analysis of segments could also be used instead of individual pixels 
[77].  

5. Conclusions 

This study shows that the use of satellite data at varying resolutions in arid lands can build a 
baseline for the application of spatial based analyses in a GIS environment. The research outlined 
here will provide further details on patterns of settlements and land use, and human–environment 
interactions in the late Holocene Sahara. The identification of (some of) the potential factors affecting 
the distribution of anthropogenic features in the area is a key result. The fitted point process model 
presented here showcases a small glimpse of the potential benefits of adopting similar (and more 
refined) spatial analyses for future work. There are two wider implications of our study: (1) an 
integrated research framework for remote sensing studies of desert landscapes has the potential to 
enhance our understanding of human–environment relations over millennial timescales. This 
methodology can be applied to other regions with long records of human occupation such as the 
Simpson Desert (Australia), Gobi Desert (China/Mongolia), Arizona/New Mexico (southern USA), 
Kalahari (southern Africa) and Jordan/Syria (Middle East); (2) The use of remote sensing allows for 
cost-effective research to continue in areas that are geopolitically unstable, and the approach can be 
used as an effective monitoring tool for sites of archaeological or built heritage value. The role of 
remote sensing in this context has been forcibly shown by images of the recent destruction of World 
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Heritage Sites in Syria, such as Palmyra. The use of remote sensing and environmental modeling 
approaches may be able to capture data from other sites similarly under threat.  
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